973 resultados para Ammonium, oxidation rate


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The generation of active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes, with different compositions of Ir (x = 0.01, 0.05, 0.10 and 0.30 ), was investigated by controlled current density electrolysis. Using a low concentration of chloride ions (0.05 mol L-1) and a low current density (5 mA cm(-2)) it was possible to produce up to 60 mg L-1 of active chlorine on a Ti/Sn0.99Ir0.01O2 anode. The feasibility of the discoloration of a textile acid azo dye, acid red 29 dye (C.I. 16570), was also investigated with in situ electrogenerated active chlorine on Ti/Sn(1-x)Ir (x) O-2 anodes. The best conditions for 100% discoloration and maximum degradation (70% TOC reduction) were found to be: NaCl pH 4, 25 mA cm(-2) and 6 h of electrolysis. It is suggested that active chlorine generation and/or powerful oxidants such as chlorine radicals and hydroxyl radicals are responsible for promoting faster dye degradation. Rate constants calculated from color decay versus time reveal a zero order reaction at dye concentrations up to 1.0 x 10(-4) mol L-1. Effects of other electrolytes, dye concentration and applied density currents also have been investigated and are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tin(II) complexes with 8-hydroxyquinolinate in solid state have been obtained by adding aqueous ammonium to a solution containing stannous chloride and 8-hydroxiquinoline in medium of HCl and acetone up to pH 5 and 9, respectively. The products obtained show the same composition, Sn(C9H6ON)(2); however there are some differences regarding both the thermal behaviour in an oxidant atmosphere and morphology. These products were characterised by elemental and complexometric analysis, TG and DTA curves, infrared and X-ray diffractometry. TG curves show, above 448 K, the partial oxidation on air atmosphere of Sn(II) complexes to Sn(IV) complexes, SnO(C9H6ON)(2). This behaviour does not depend only on pH in which the compounds were obtained but also on the heating rate in TG curves. Sn(II) complexes volatilise almost completely on nitrogen atmosphere and partially on air atmosphere depending on the oxidation degree of the compound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A high performance liquid chromatography ( HPLC) method with electrochemical detection (ED) was developed for the determination of benzidine, 3,3-dimethylbenzidine, o-toluidine and 3,3-dichlorobenzidine in the wastewater of the textile industry. The aromatic amines were eluted on a reversed phase column Shimadzu Shimpack C-18 using acetonitrile + ammonium acetate (1 x 10(-4) mol L-1) at a ratio 46: 54 v/v as mobile phase, pumped at a flow rate of 1.0 mL min(-1). The electrochemical oxidation of the aromatic amines exhibits well-defined peaks at a potential range of +0.45 to +0.78 V on a glassy carbon electrode. Optimum working potentials for amperometric detection were from 0.70 V to +1.0 V vs. Ag/AgCl. Analytical curves for all the aromatic amines studied using the best experimental conditions present linear relationship from 1 x 10(-8) mol L-1 to 1.5 x 10(-5) mol L-1, r = 0.99965, n = 15. Detection limits of 4.5 nM (benzidine), 1.94 nM (o-toluidine), 7.69 nM (3,3-dimethylbenzidine), and 5.15 nM (3,3-dichlorobenzidine) were achieved, respectively. The detection limits were around 10 times lower than that verified for HPLC with ultra violet detection. The applicability of the method was demonstrated by the determination of benzidine in wastewater from the textile industry dealing with an azo dye processing plant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tungsten carbide, WC, has shown dissimilar thermal behavior when it is heated on changeable heating rate and flow of oxidant atmosphere. The oxidation of WC to WO3 tends to be in a single and slow kinetic step on slow heating rate and/or low flux of air. Kinetic parameters, on non-isothermal condition, could be evaluated to the oxidation of WC to heating rate below 15 degrees C min(-1) or low flow of air (10 mL min(-1)). The reaction is governed by nucleation and growth at 5 to 10 degrees C min(-1) then the tendency is to be autocatalytic, JMA and SB, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intra- and intermolecular rates of degradation of cephaclor were determined with and without hexadecyltrimethylammonium bromide (CTABr). Micellar-derived spectral shifts were used to measure the association of the ionic forms as well as to determine the effect of CTABr on the apparent acid dissociation constant of the antibiotic. The rate of degradation of cephaclor increased with detergent and was salt sensitive. Micellar effects were analyzed quantitatively within the frame-work of the speudophase ion exchange model. All experimental data were fitted to this model which was used to predict the combined effects of pH and detergent concentration. Micelles increased the rate of OH- attack on cephaclor; most of the effect was due to the concentration of reagents in the micellar pseudophase. The intramolecular degradation was catalyzed 25-fold by micelles, and a working hypothesis to rationalize this effect is proposed. The results demonstrate that quantitative analysis can be utilized to assess and predict effects of detergents on drug stability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, electrochemical oxidation of albendazole (ABZ) was carried out using a glassy carbon-rotating disk electrode. Development of electroanalytical methodology for ABZ quantification in pharmaceutical formulations was also proposed by using linear sweep voltammetric technique. Electrochemical oxidation is observed for ABZ at E 1/2 = 0.99:V vs. Ag/AgCl sat, when an anodic wave is observed. Kinetic parameters obtained for ABZ oxidation exhibited a standard heterogeneous rate constant for the electrodic process equal to (1.51 ± 0.07) ± 10 -5:cm:s -1, with a αn a value equal to 0.76. Limiting current dependence against ABZ concentration exhibited linearity on 5.0 ± 10 -5 to 1.0 ± 10 -2:mol:l -1 range, being obtained a detection limit of 2.4 ± 10 -5:mol:l -1. Proposed methodology was applied to ABZ quantification in pharmaceutical formulations. © 2005 Elsevier SAS. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is a growing body of evidence that melatonin and its oxidation product, N1-acetyl-N2-formyl-5-methoxykynuramine (AFMK), have anti-inflammatory properties. From a nutritional point of view, the discovery of melatonin in plant tissues emphasizes the importance of its relationship with plant peroxidases. Here we found that the pH of the reaction mixture has a profound influence in the reaction rate and products distribution when melatonin is oxidized by the plant enzyme horseradish peroxidase. At pH 5.5, 1 mm of melatonin was almost completely oxidized within 2 min, whereas only about 3% was consumed at pH 7.4. However, the relative yield of AFMK was higher in physiological pH. Radical-mediated oxidation products, including 2-hydroxymelatonin, a dimer of 2-hydroxymelatonin and O-demethylated dimer of melatonin account for the fast consumption of melatonin at pH 5.5. The higher production of AFMK at pH 7.4 was explained by the involvement of compound III of peroxidases as evidenced by spectral studies. On the other hand, the fast oxidative degradation at pH 5.5 was explained by the classic peroxidase cycle. © 2007 The Authors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After harvest, sugarcane residues left on the soil surface can alter nitrogen (N) dynamics in the plant-soil system. In Oxisols, the nitrogen fertilizer applied had its effects on the levels of ammonium and nitrate in the soil, N concentration in the plant leaves, and on the growth and productivity of second ratoon plants. The N rates tested were of 0, 60, 120, 180, and 240 kg ha-1. Each treatment was replicated four times. Four months after the experiment was started, ammonium and nitrate concentration in the soil, N levels in plant leaves, and plant growth were evaluated. Productivity was evaluated 11 months after the experiment was set. By increasing the content of mineral N in soil, plant growth variables reflected differences in the production of stems; however, it did not affect foliar N. The use of leaf analysis was not important to assess the nutritional status of nitrogen in the ratoon sugarcane. Nitrogen concentration in soil was affected by nitrogen fertilization, but not the N content in leaves. The rate of 138 kg N ha-1enabled greater production of sugarcane stalks (140 t ha-1). © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the considerable progress in the understanding of the mechanistic aspects of the oscillatory electro-oxidation of C1 molecules, there are apparently no systematic studies concerning the impact of surface modifiers on the oscillation dynamics. Herein we communicate on the oscillatory electro-oxidation of formic acid on ordered Pt3Sn intermetallic phase, and compare the results with those obtained on a polycrystalline platinum electrode. Overall, the obtained results were very reproducible, robust and allowed a detailed analysis on the correlation between the catalytic activity and the oscillation dynamics. The presence of Sn in the intermetallic electrode promotes drastic effects on the oscillatory dynamics. The decrease in the mean electrode potential and in the oscillation frequency, as well as the pronounced increase in the number oscillations (and also in the oscillation time), was discussed in connection with the substantial catalytic enhancement of the Pt3Sn towards the electro-oxidation of formic acid. The self-organized potential oscillations were used to probe the electrocatalytic activity of the Pt3Sn electrode and compare it with that for polycrystalline Pt. The presence of Sn resulted in a significant decrease (2-11 times, depending on the applied current) of the rate of surface poisoning. © 2012 Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aromatic amines are environmental pollutants and represent one of the most important classes of industrial and natural chemicals. Some types of complex effluents containing these chemical species, mainly those originated from chemicals plants are not fully efficiently treated by conventional processes. In this work, the use of electrochemical technology through an electrolytic pilot scale flow reactor is considered for treatment of wastewater of a chemical industry manufacturer of antioxidant and anti-ozonant substances used in rubber. Experimental results showed that was possible to remove between 65% and 95% of apparent colour and chemical oxygen demand removal between 30 and 90% in 60 min of treatment, with energy consumption rate from 26 kWh m-3 to 31 kWh m-3. Absorbance, total organic carbon and toxicity analyses resulted in no formation of toxic by-products. The results suggest that the presented electrochemical process is a suitable method for treating this type of wastewater, mainly when pre-treated by aeration. Copyright © 2013 Inderscience Enterprises Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sluggish kinetics of ethanol oxidation on Pt-based electrodes is one of the major drawbacks to its use as a liquid fuel in direct ethanol fuel cells, and considerable efforts have been made to improve the reaction kinetics. Herein, we report an investigation on the effect of the Pt microstructure (well-dispersed versus agglomerated nanoparticles) and the catalyst support (carbon Vulcan, SnO2, and RuO2) on the rate of the electrochemical oxidation of ethanol and its major adsorbed intermediate, namely, carbon monoxide. By using several structural characterization techniques such as X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy, along with potentiodynamic and potentiostatic electrochemical experiments, we show that by altering both the Pt microstructure and the support, the rate of the electrochemical oxidation of ethanol can be improved up to a factor of 12 times compared to well-dispersed carbon-supported Pt nanoparticles. As a result of a combined effect, the interaction of Pt agglomerates with SnO2 yielded the highest current densities among all materials studied. The differences in the activity are discussed in terms of structural and electronic properties as well as by mass transport effects, providing valuable insights to the development of more active materials. © 2013 Springer-Verlag Berlin Heidelberg.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. Among the various materials for implants, calcium phosphates and hydroxyapatite are widely used clinically. In this work, titanium nanotubes were fabricated on the surface of Ti-7.5Mo alloy by anodization. The samples were anodized for 20 V in an electrolyte containing glycerol in combination with ammonium fluoride (NH4F, 0.25%), and the anodization time was 24 h. After being anodized, specimens were heat treated at 450 °C and 600°C for 1 h to crystallize the amorphous TiO2 nanotubes and then treated with NaOH solution to make them bioactive, to induce growth of calcium phosphate in a simulated body fluid. Surface morphology and coating chemistry were obtained respectively using, field-emission scanning electron microscopy (FEG-SEM), AFM and X-ray diffraction (XRD). It was shown that the presence of titanium nanotubes induces the growth of a sodium titanate nanolayer. During the subsequent invitro immersion in a simulated body fluid, the sodium titanate nanolayer induced the nucleation and growth of nano-dimensioned calcium phosphate. It was possible to observe the formation of TiO2 nanotubes on the surface of Ti-7.5Mo. Calcium phosphate coating was greater in the samples with larger nanotube diameter. These findings represent a simple surface treatment for Ti-7.5Mo alloy that has high potential for biomedical applications. © (2013) Trans Tech Publications, Switzerland.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work describes the photoelectrochemical hydrogen generation during a photodegradation of an organic compound. For this, it was chosen the reactive black 5 dye as a model of organic pollutant and its oxidation under TiO2 nanotube in a two compartment cell. The photoelectrocatalysis is conducted in 0.1 mol L-1 Na2SO4 pH 6 medium under photoanode biased at +1.0 V (SCE) and activated by UV and visible light using 150W Xe-Arc lamp (Oriel) and 125 W Hg lamp (Osram). The concomitant hydrogen production was monitored at cathodic compartment using a Pt cathode. Using optimized condition of Na2SO4 0.1 mol L-1 pH 6 as supporting electrolyte, applied potential of +1.0V it was verified 100% of discoloration and 72% of TOC removal of 1.0 x 10(-5) mol L-1 Reactive Black 5 dye after 120 min of treatment (rate constant of 10.6 x10(-2) min(-1)). The concomitant hydrogen generation was 44% in this condition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)