983 resultados para Alveolar ridge augmentation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present results of a detailed mineralogical and geochemical study of the progressive hydrothermal alteration of clastic sediments recovered at ODP Site 858 in an area of active hydrothermal venting at the sedimented, axial rift valley of Middle Valley (northern Juan de Fuca Ridge). These results allow a characterization of newly formed phyllosilicates and provide constraints on the mechanisms of clay formation and controls of mineral reactions on the chemical and isotopic composition of hydrothermal fluids. Hydrothermal alteration at Site 858 is characterized by a progressive change in phyllosilicate assemblages with depth. In the immediate vent area, at Hole 858B, detrital layers are intercalated with pure hydrothermal precipitates at the top of the section, with a predominance of hydrothermal phases at depth. Sequentially downhole in Hole 858B, the clay fraction of the pure hydrothermal layers changes from smectite to corrensite to swelling chlorite and finally to chlorite. In three pure hydrothermal layers in the deepest part of Hole 858B, the clay minerals coexist with neoformed quartz. Neoformed and detrital components are clearly distinguished on the basis of morphology, as seen by SEM and TEM, and by their chemical and stable isotope compositions. Corrensite is characterized by a 24 Å stacking sequence and high Si- and Mg-contents, with Fe/(Fe+Mg) ratio of = 0.08. We propose that corrensite is a unique, possibly metastable, mineralogical phase and was precipitated directly from seawater-dominated hydrothermal fluids. Hydrothermal chlorite in Hole 858B has a stacking sequence of 14 Å with Fe/(Fe+Mg) ratios of ? 0.35. The chemistry and structure of swelling chlorite suggest that it is a corrensiteychlorite mixed-layer phase. The mineralogical zonation in Hole 858B is accompanied by a systematic decrease in d18O, reflecting both the high thermal gradients that prevail at Site 858 and extensive sediment-fluid interaction. Precipitation of the Mg-phyllosilicates in the vent region directly controls the chemical and isotopic compositions of the pore fluids. This is particularly evident by decreases in Mg and enrichments in deuterium and salinity in the pore fluids at depths at which corrensite and chlorite are formed. Structural formulae calculated from TEM-EDX analyses were used to construct clay-H2O oxygen isotope fractionation curves based on oxygen bond models. Our results suggest isotopic disequilibrium conditions for corrensite-quartz and swelling chlorite-quartz precipitation, but yield an equilibrium temperature of 300° C ± 30° for chlorite-quartz at 32 m below the surface. This estimate is consistent with independent estimates and indicates steep thermal gradients of 10-11°/m in the vent region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 50 km-long West Valley segment of the northern Juan de Fuca Ridge is a young, extension-dominated spreading centre, with volcanic activity concentrated in its southern half. A suite of basalts dredged from the West Valley floor, the adjacent Heck Seamount chain, and a small near-axis cone here named Southwest Seamount, includes a spectrum of geochemical compositions ranging from highly depleted normal (N-) MORB to enriched (E-) MORB. Heck Seamount lavas have chondrite-normalized La/Sm en -0.3, 87Sr/86Sr = 0.70235 - 0.70242, and 206Pb/204Pb = 18.22 - 18.44, requiring a source which is highly depleted in trace elements both at the time of melt generation and over geologic time. The E-MORB from Southwest Seamount have La/Sm en -1.8, 87Sr/86Sr = 0.70245 - 0.70260, and 206Pb/204Pb = 18.73 - 19.15, indicating a more enriched source. Basalts from the West Valley floor have chemical compositions intermediate between these two end-members. As a group, West Valley basalts from a two-component mixing array in element-element and element-isotope plots which is best explained by magma mixing. Evidence for crustal-level magma mixing in some basalts includes mineral-melt chemical and isotopic disequilibrium, but mixing of melts at depth (within the mantle) may also occur. The mantle beneath the northern Juan de Fuca Ridge is modelled as a plum-pudding, with "plums" of enriched, amphibole-bearing peridotite floating in a depleted matrix (DM). Low degrees of melting preferentially melt the "plums", initially removing only the amphibole component and producing alkaline to transitional E-MORB. Higher degrees of melting tap both the "plums" and the depleted matrix to yield N-MORB. The subtly different isotopic compositions of the E-MORBs compared to the N-MORBs require that any enriched component in the upper mantle was derived from a depleted source. If the enriched component crystallized from fluids with a DM source, the "plums" could evolve to their more evolved isotopic composition after a period of 1.5-2.0 Ga. Alternatively, the enriched component could have formed recently from fluids with a lessdepleted source than DM, such as subducted oceanic crust. A third possibility is that enriched material might be dispersed as "plums" throughout the upper mantle, transported from depth by mantle plumes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Detailed sedimentological investigations were performed on sediments from DSDP-Site 594 (Chatham Rise, east of New Zealand) in order to reconstruct the evolution of paleoclimate and paleoceanographic conditions in the Southwest Pacific during the last 6 million years. The results can be summarized as follows: (1) High accumulation rates of biogenic opal and carbonate and the dominance of smectites in the clay fraction suggest increased oceanic productivity and an equable dominantly humid climate during the late Miocene. (2) During Pliocene times, decreasing contents of smectites and increasing feldspar/quartz ratios point to an aridification in the source area of the terrigenous sediments, culmunating near 2.5 Ma. At that time, accumulation rates of terrigenous components distinctly increased probably caused by increased sediment supply due to intensified atmospheric and oceanic circulation, lowered sea level, and decreased vegetation cover. (3) A hiatus (1.45 to 0.73 Ma) suggests intensified intermediate-water circulation. (4) Major glacial/interglacial cycles characterize the upper 0.73 Ma. During glacial times, oceanic productivity and terrigenous sediment supply was distinctly increased because of intensified atmospheric and oceanic circulations and lowered sea level, whereas during interglacials productivity and terrigenous sediment supply were reduced. (5) An increased content of amphibols in the sediments of Site 594 indicates increased volcanic activities during the last 4.25 Ma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gabbroic cumulates drilled south of the Kane Transform Fault on the slow-spread Mid-Atlantic Ridge preserve up to three discrete magnetization components. Here we use absolute age constraints derived from the paleomagnetic data to develop a model for the magmatic construction of this section of the lower oceanic crust. By comparing the paleomagnetic data with mineral compositions, and based on thermal models of local reheating, we infer that magmas that began crystallizing in the upper mantle intruded into the lower oceanic crust and formed meter-scale sills. Some of these magmas were crystal-laden and the subsequent expulsion of interstitial liquid from them produced '"cumulus" sills. These small-scale magmatic injections took place over at least 210 000 years and at distances of ~3 km from the ridge axis and may have formed much of the lower crust. This model explains many of the complexities described in this area and can be used to help understand the general formation of oceanic crust at slow-spread ridges.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

More than 95% of the carbon lost from the "blue-ocean" reservoir to the sedimentary sink appears to be transferred as skeletal CaCO3, produced in the surface waters. This skeletal CaCO3 carries a productivity signal which is much better preserved in the underlying pelagic carbonate sediments than that of the refractory organic carbon accompanying it. Here, we develop a new method to quantify this signal in terms of organic carbon paleoproductivity, using the sedimentary mass accumulation rates of pelagic carbonate. These are converted into carbonate transit-paleofluxes, which are then translated into the corresponding transit-fluxes of organic carbon, via the carbonate to organic carbon ratios reported from deep-moored sediment trap experiments in modern blue-ocean environments. Paleoproductivity can then be estimated quantitatively by using published algorithms describing the relationship between the export production of particulate organic carbon at depth and primary productivity in the euphotic zone. Although our approach seems rather straightforward, it contains several pitfalls, the effects of which are highlighted by an example comprising three Paleocene/Oligocene to Recent pelagic carbonate sequences drilled during ODP Leg 121 in the eastern Indian Ocean. Although some extreme values are likely due to errors, such as poorly constrained datum levels and dissolution peaks, the results for the Quaternary and Neogene correlate well from site to site and are within the productivity range of present-day low to medium latitude open oceans. Our method may provide an opportunity to actually quantify blue-ocean primary productivity in sedimentary carbonate environments, but requires validation by other, more established ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Geochemical compositions and Sr and Nd isotopes were measured in two cores collected ~2 and 5 km from the Rainbow hydrothermal vent site on the Mid-Atlantic Ridge. Overall, the cores record enrichments in Fe and other metals from hydrothermal fallout, but sequential dissolution of the sediments allows discrimination between a leach phase (easily leachable) and a residue phase (refractory). The oxy-anion and transition metal distribution combined with rare earth element (REE) patterns suggest that (1) the leach fraction is a mixture of biogenic carbonate and hydrothermal Fe-Mn oxy-hydroxide with no significant contribution from detrital material and (2) >99.5% of the REE content of the leach fraction is of seawater origin. In addition, the leach fraction has an average 87Sr/86Sr ratio indistinguishable from modern seawater at 0.70916. Although we lack the epsilon-Nd value of present-day deep water at the Rainbow vent site, we believe that the REE budget of the leach fraction is predominantly of seawater origin. We suggest therefore that the leach fraction provides a record of local seawater epsilon-Nd values. Nd isotope data from these cores span the period of 4-14 ka (14C ages) and yield epsilon-Nd values for North East Atlantic Deep Water (NEADW) that are higher (-9.3 to -11.1) than those observed in the nearby Madeira Abyssal Plain from the same depth (-12.4 ± 0.9). This observation suggests that either the Iceland-Scotland Overflow Water (ISOW) and Lower Deep Water contributions to the formation of NEADW are higher along the Mid-Atlantic Ridge than in the surrounding basins or that the relative proportion of ISOW was higher during this period than is observed today. This study indicates that hydrothermal sediments have the potential to provide a higher-resolution record of deep water epsilon-Nd values, and hence deepwater circulation patterns in the oceans, than is possible from other types of sediments.