944 resultados para Aluminium-scandium alloys


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface modification of thin aluminium films is both produced and characterised by exciting surface plasmon polaritons in an attenuated total reflection geometry: silica prism/aluminium/aluminium oxide system. The modification is performed, under ambient conditions, by exposure to a low fluence (

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin, oxidised Al films grown an one face of fused silica prisms are exposed. tinder ambient conditions, to single shots from an excimer laser operating at wavelength 248 nm. Preliminary characterisation of the films using attenuated total reflection yields optical and thickness data for the Al and Al oxide layers; this step facilitates the subsequent, accurate tuning of the excimer laser pulse to the: surface plasmon resonance at the Al/(oxide)/air interface and the calculation of the fluence actually absorbed by the thin film system. Ablation damage is characterised using scanning electron, and atomic force microscopy. When the laser pulse is incident, through the prism on the sample at less than critical angle, the damage features are molten in nature with small islands of sub-micrometer dimension much in evidence, a mechanism of film melt-through and subsegment blow-off due to the build up of vapour pressure at the substrate/film interface is appropriate. By contrast, when the optical input is surface plasmon mediated, predominately mechanical damage results with the film fragmenting into large flakes of dimensions on the order of 10 mu m. It is suggested that the ability of surface plasmons to transport energy leads to enhanced, preferential absorption of energy at defect sites causing stress throughout the film which exceeds the ultimate tensile stress for the film: this in turn leads to film break-up before melting can onset. (C) 1998 Elsevier Science B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium has good biocompatibility and so its alloys are used as implant materials, but they suffer from having poor wear resistance. This research aims to improve the wear resistance and the tensile strength of titanium alloys potentially for implant applications. Titanium alloys Ti–6Al–4V and Ti–6Al–7Nb were subjected to shotpeening process to study the wear and tensile behavior. An improvement in the wear resistance has been achieved due to surface hardening of these alloys by the process of shotpeening. Surface microhardness of shotpeened Ti–6Al–4V and Ti–6Al–7Nb alloys has increased by 113 and 58 HV(0.5), respectively. After shotpeening, ultimate tensile strength of Ti–6Al–4V increased from 1000 MPa to 1150 MPa, higher than improvement obtained for heat treated titanium specimens. The results confirm that shotpeening pre-treatment improved tensile and sliding wear behavior of Ti–6Al–4V and Ti–6Al–7Nb alloys. In addition, shotpeening increased surface roughness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroless nickel composite coatings with silicon carbide, SiC, as reinforcing particles deposited with Ni–P onto aluminium alloy, LM24, having zincating as under layer were subjected to heat treatment using air furnace. The changes at the interface were investigated using scanning electron microscope (SEM) and energy dispersive X-ray (EDX) to probe the chemistry changes upon heat treatment. Microhardness tester with various loads using both Knoop and Vickers indenters was used to study the load effect clubbed with the influence of second phase particles on the coating at the vicinity of the interface. It was observed that zinc was absent at the interface after elevated temperature heat treatment at 400–500 °C. Precipitation of copper and nickel with a distinct demarcation (copper rich belt) along the coating interface was seen with irregular thickness of the order of 1 μm. Migration of copper from the bulk aluminium alloy could have been the factor. Brittleness of the coating was confirmed on heat treatment when indented with Vickers. However, in composite coating the propagation of the microcrack was stopped by the embedded particles but the microcracks continue in the matrix when not interrupted by second phase particles (SiC).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroless Ni–P (EN) and composite Ni–P–SiC (ENC) coatings were developed on cast aluminium alloy substrate, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni–P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni–Si phase was observed up to 500 °C of heat treatment. The microhardness is increased on incorporation of SiC in Ni–P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroless Ni-P (EN) and composite Ni-P-SiC (ENC) coatings were developed on cast aluminium alloy, LM24. The coating phase composition, microstructure and microhardness were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and microhardness tester, respectively, on as-plated and heat-treated specimens. The original microstructure of the Ni-P matrix is not affected by the inclusion of the hard particles SiC. No formation of Ni-Si phase was observed upto 500°C of heat treatment. The microhardness is increased on incorporation of SiC in Ni-P matrix. The hardening mechanism is the formation of intermetallic phase Ni3P on annealing at elevated temperature. Overall, the composite coating (ENC) was found to be superior as compared to particles free (EN) coating in both as-deposited and heat-treated conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electroless nickel (EN) and electroless nickel composite (ENC) coatings were deposited on aluminium alloy substrate, LM24. The micro abrasion test was conducted to study the wear behaviour of the coatings with the effect of SiC concentration. Microhardness of the coatings was tested also. The wear scars were analysed using optical microscope and scanning electron microscope (SEM). The wear resistance was found to be improved in composite coating that has higher microhardness as compared to particles free and the bare aluminium substrate. In as-deposited condition for the composite coating, the wear volume increases on increase in SiC percentage in the coating but is found to be minimum for lower SiC percentage. The increase in hardness on heat treatment at 400°C is due to the hardening or grain coarsening with the formation Ni3P.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shape memory alloys (SMAs) have the ability to undergo large deformations with minimum residual strain and also the extraordinary ability to undergo reversible hysteretic shape change known as the shape memory effect. The shape memory effect of these alloys can be utilised to develop a convenient way of actively confine concrete sections to improve their shear strength, flexural ductility and ultimate strain. Most of the previous work on active confinement of concrete using SMA has been carried out on circular sections. In this study retrofitting strategies for active confinement of non-circular sections have been proposed. The proposed schemes presented in this paper are conceived with an aim to seismically retrofit beam-column joints in non-seismically designed reinforced concrete buildings. SMAs are complex materials and their material behaviour depends on number of parameters. Depending upon the alloying elements, SMAs exhibit different behaviour in different conditions and are highly sensitive to variation in temperature, phase in which it is used, loading pattern, strain rate and pre-strain conditions. Therefore, a detailed discussion on the behaviour of SMAs under different thermo-mechanical conditions is presented first.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Titanium alloy exhibits an excellent combination of bio-compatibility, corrosion resistance, strength and toughness. The microstructure of an alloy influences the properties. The microstructures depend mainly on alloying elements, method of production, mechanical, and thermal treatments. The relationships between these variables and final properties of the alloy are complex, non-linear in nature, which is the biggest hurdle in developing proper correlations between them by conventional methods. So, we developed artificial neural networks (ANN) models for solving these complex phenomena in titanium alloys.

In the present work, ANN models were used for the analysis and prediction of the correlation between the process parameters, the alloying elements, microstructural features, beta transus temperature and mechanical properties in titanium alloys. Sensitivity analysis of trained neural network models were studied which resulted a better understanding of relationships between inputs and outputs. The model predictions and the analysis are well in agreement with the experimental results. The simulation results show that the average output-prediction error by models are less than 5% of the prediction range in more than 95% of the cases, which is quite acceptable for all metallurgical purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fermi-level pinning of aluminium on n-type germanium (n-Ge) was reduced by insertion of a thin interfacial dielectric by atomic layer deposition. The barrier height for aluminium contacts on n-Ge was reduced from 0.7 eV to a value of 0.28 eV for a thin Al2O3 interfacial layer (∼2.8 nm). For diodes with an Al2O3 interfacial layer, the contact resistance started to increase for layer thicknesses above 2.8 nm. For diodes with a HfO2 interfacial layer, the barrier height was also reduced but the contact resistance increased dramatically for layer thicknesses above 1.5 nm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract The material flow in friction stir spot welding of aluminium to both aluminium and steel has been investigated, using pinless tools in a lap joint geometry. The flow behaviour was revealed experimentally using dissimilar Al alloys of similar strength. The effect on the material flow of tool surface features, welding conditions (rotation speed, plunge depth, dwell time), and the surface state of the steel sheet (un-coated or galvanized) have been systematically studied. A novel kinematic flow model is presented, which successfully predicts the observed layering of the dissimilar Al alloys under a range of conditions. The model and the experimental observations provide a consistent interpretation of the stick-slip conditions at the tool-workpiece interface, addressing an elusive and long-standing issue in the modelling of heat generation in friction stir processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the results from the experimental investigation on heat activated prestressing of Shape Memory Alloy (SMA) wires for active confinement of concrete sections. Active confinement of concrete is found to be much more effective than passive confinement which becomes effective only when the concrete starts to dilate. Active confinement achieved using conventional prestressing techniques often faces many obstacles due to practical limitations. A class of smart materials that has recently drawn attention in civil engineering is the super elastic SMA which has the ability to undergo reversible hysteretic shape change known as the shape memory effect. The shape memory effect of SMAs can be utilized to develop a convenient prestressing technique for active confinement of concrete sections.
In this study a series of experimental tests are conducted to study Heat Activated Prestress (HAP) in SMAs. Three different types of tests are conducted with different loading protocol to determine parameters such as HAP, residual strain after heating and range of strain that can be used for effective active confinement after HAP. Test results show a maximum HAP of about 500 MPa can be achieved after heating and approximately 450MPa is retained at 25oC in specimens pre-strained by 6%. A substantial amount of strain recovery upon unloading and after heating the SMA wires is recorded. About 2.5% elastic strain recovery upon unloading from 6% strain level is observed. In the specimen pre-strained by 6%, a total of 4% strain is recovered when unloaded after heating. A strain range of 3% is found available for effective confinement after HAP. Test results demonstrate that SMAs have unique features that can be intelligently employed in many civil engineering applications including active confinement of concrete sections.