988 resultados para Alps
Resumo:
Debris flows represent a widespread threat to villages and small towns in the Swiss Alps. For many centuries people “managed” such risks by trying to avoid hazardous areas. However, major debris flow and flood events in the last 25 years have revealed that the degree of freedom to engage in this type of risk management has substantially decreased. This became especially evident during the 1999 disasters in a number of places in Switzerland. The winter of that year was unusually wet. In February heavy snowfall triggered destructive avalanches. In May high temperatures caused heavy snowmelt, with excessive rainfall contributing more water to the already saturated soils. Landslides, debris flows and floods were triggered in many locations, including Sörenberg. Hazard prevention and disaster management have a long tradition in Switzerland, although an integrated approach to risk management is rather new. Only in recent years have methods and tools been developed to assess hazards, define protection goals, and implement disaster reduction measures. The case of Sörenberg serves as an example of how today's approaches to disaster reduction are implemented at the local level.
Resumo:
Alpine heavy precipitation events often affect small catchments, although the circulation pattern leading to the event extends over the entire North Atlantic. The various scale interactions involved are particularly challenging for the numerical weather prediction of such events. Unlike previous studies focusing on the southern Alps, here a comprehensive study of a heavy precipitation event in the northern Alps in October 2011 is presented with particular focus on the role of the large-scale circulation in the North Atlantic/European region. During the event exceptionally high amounts of total precipitable water occurred in and north of the Alps. This moisture was initially transported along the flanks of a blocking ridge over the North Atlantic. Subsequently, strong and persistent northerly flow established at the upstream flank of a trough over Europe and steered the moisture towards the northern Alps. Lagrangian diagnostics reveal that a large fraction of the moisture emerged from the West African coast where a subtropical upper-level cut-off low served as an important moisture collector. Wave activity flux diagnostics show that the ridge was initiated as part of a low-frequency, large-scale Rossby wave train while convergence of fast transients helped to amplify it locally in the North Atlantic. A novel diagnostic for advective potential vorticity tendencies sheds more light on this amplification and further emphasizes the role of the ridge in amplifying the trough over Europe. Operational forecasts misrepresented the amplitude and orientation of this trough. For the first time, this study documents an important pathway for northern Alpine flooding, in which the interaction of synoptic-scale to large-scale weather systems and of long-range moisture transport from the Tropics are dominant. Moreover, the trapping of moisture in a subtropical cut-off near the West African coast is found to be a crucial precursor to the observed European high-impact weather.
Resumo:
First indications of prehistoric sites in lakes of Switzerland go back more than 200 years and in 1854 Ferdinand Keller (1800-1881) published his famous book The Celtic Pile Dwellings in Swiss Lakes. Since these times, large-scale rescue excavations as well as survey and research projects have extended our knowledge about Neolithic and Bronze Age settlements in lakes, bogs and rivers around the European Alps. In 2011 a representative choice of 111 sites out of nearly 1000 in six countries around the Alps (Austria, France, Germany, Italy, Slovenia and Switzerland) were recognized by the UNESCO World Heritage committee as serial World Heritage. The lecture will give a general overview on prehistoric lake dwellings around the Alps (distribution, types of lakes/bogs and environment of sites, chronology/cultural units in the time scale 5300 to 800 BC) and present examples of well-documented settlement structures. The intense use of dendrochronological dating allowed the building up of a well-fixed chronological framework. In some cases dendrochronology is the basis for year-by-year reconstructions of prehistoric village biographies and detailed insights in the life cycle of early agrarian settlements. Beside these local events the grouped repartition of lake dwelling remains on the time scale makes a more global correlation between Holocene lake levels and the preservation of archaeological layers likely.
Resumo:
Based on historic documents the event history for 17 mountain torrents in the Swiss Alps was evaluated. Four classes could be determined for the recurrence interval of the debris flow events. The magnitude is not necessarily dependent on the recurrence interval. The characteristics of the catchment basin (disposition) are mainly controlling the magnitude. In order to evaluate the effects of climatic change on the debris flow activity, knowledge about the magnitude and the frequency are necessary.
Resumo:
A great number of debris flows occurred during the flood catastrophes of the summer of 1987 in the Swiss Alps. Aerial photography, field investigations and eyewitness accounts documented and analysed the events. As an example of the reconstructed major events, the large debris flow in the Varuna valley involved an estimated peak discharge between 400 and 800 m3/s and an event magnitude of 200,000 m3. Several single pulses were observed; the duration of each of them appeared to be not more than a few minutes. Apart from incision into weak bedrock, the maximum erosion depth seemed to depend on the channel gradient. Based on approximately 600 events, typical starting zones and rainfall conditions are discussed with regard to the triggering conditions. Existing and new empirical formulae are proposed to estimate the most important flow parameters. These values are compared to debris flow data from Canada and Japan.
Resumo:
Neolithic and Bronze Age wetland sites around the Alps (so called pile-dwellings, Pfahlbauten or palafittes in German/French) are of outstanding universal value (UNESCO-world heritage since 2011). Typical sites are in lakes, rivers and bogs, dating between 5300 and 800 BC. Of common character is the perfect conservation of wood, textiles from plant fabrics and many other organic materials. Larger quantities of sub-fossilized wood, as in the peri-alpine sites, offer the possibility of high-precision dating by dendrochronology. Research in these wetland sites started in the mid-19th century. Through large scale rescue excavations since the 1970s and the evolution of underwater archaeology in the same period the Swiss accumulated a thorough experience with these specific sites. Research in wetland sites is shared between cantonal institutions and universities and led to a worldwide unique accumulation of knowledge. Comparable sites exist outside of the Alpine area, but in much smaller quantities. Regions like Russia (small lakes in NW-Russia) and Macedonia (medium size lakes in the border zone of Macedonia, Albania and Greece) have a high scientific potential; rivers in Ukraine are supposed to have the same type of sites.
Resumo:
This study explores whether the high variability of vascular plant diversity among alpine plant communities can be explained by stress and/or disturbance intensities. Species numbers of 14 alpine plant communities were sampled in the Swiss Alps. To quantify the intensity of 13 stress and 6 disturbance factors potentially controlling plant life in these communities, a survey was conducted by asking numerous specialists in alpine vegetation to assess the importance of the different factors for each community. The estimated values were combined in stress- and disturbance-indices which were compared with diversity according to the Intermediate Stress Hypothesis, the Intermediate Disturbance Hypothesis, and the Dynamic Equilibrium Model, respectively. Each of these theories explained a part of the variability in the species richness, but only the Dynamic Equilibrium Model provided a complete and consistent explanation. The last model suggests that community species richness within the alpine life zone is generally controlled by stress intensity. Disturbance and competition seem to play a secondary role by fine-tuning diversity in specific communities. As diversity is primarily limited by stress, a moderation of temperature-related stress factors, as a result of global warming, may cause a shift of the equilibrium between stress, disturbance, and competition in alpine ecosystems.
Resumo:
Adaptation potential of forests to rapid climatic changes can be assessed from vegetation dynamics during past climatic changes as preserved in fossil pollen data. However, pollen data reflect the integrated effects of climate and biotic processes, such as establishment, survival, competition, and migration. To disentangle these processes, we compared an annually laminated late Würm and Holocene pollen record from the Central Swiss Plateau with simulations of a dynamic forest patch model. All input data used in the simulations were largely independent from pollen data; i.e. the presented analysis is non-circular. Temperature and precipitation scenarios were based on reconstructions from pollen-independent sources. The earliest arrival times of the species at the study site after the last glacial were inferred from pollen maps. We ran a series of simulations under different combinations of climate and immigration scenarios. In addition, the sensitivity of the simulated presence/absence of four major species to changes in the climate scenario was examined. The pattern of the pollen record could partly be explained by the used climate scenario, mostly by temperature. However, some features, in particular the absence of most species during the late Würm could only be simulated if the winter temperature anomalies of the used scenario were decreased considerably. Consequently, we had to assume in the simulations, that most species immigrated during or after the Younger Dryas (12 000 years BP), Abies and Fagus even later. Given the timing of tree species immigration, the vegetation was in equilibrium with climate during long periods, but responded with lags at the time-scale of centuries to millennia caused by a secondary succession after rapid climatic changes such as at the end of Younger Dryas, or immigration of dominant taxa. Climate influenced the tree taxa both directly and indirectly by changing inter-specific competition. We concluded, that also during the present fast climatic change, species migration might be an important process, particularly if geographic barriers, such as the Alps are in the migrational path.
Resumo:
Sediment cores spanning the last two centuries were taken in Hagelseewli, a high-elevation lake in the Swiss Alps. Contiguous 0.5 cm samples were analysed for biological remains, including diatoms, chironomids, cladocera, chrysophyte cysts, and fossil pigments. In addition, sedimentological and geochemical variables such as loss-on-ignition, total carbon, nitrogen, sulphur, grain-size and magnetic mineralogy were determined. The results of these analyses were compared to a long instrumental air temperature record that was adapted to the elevation of Hagelseewli by applying mean monthly lapse rates. During much of the time, the lake is in the shadow of a high cliff to the south, so that the lake is ice-covered during much of the year and thus decoupled from climatic forcing. Lake biology is therefore influenced more by the duration of ice-cover than by direct temperature effects during the short open-water season. Long periods of ice-cover result in anoxic water conditions and dissolution of authigenic calcites, leading to carbonate-free sediments. The diversity of chironomid and cladoceran assemblages is extremely low, whereas that of diatom and chrysophyte cyst assemblages is much higher. Weak correlations were observed between the diatom and chrysophyte cyst assemblages on the one hand and summer or autumn air temperatures on the other, but the proportion of variance explained is low, so that air temperature alone cannot account for the degree of variation observed in the paleolimnological record. Analyses of mineral magnetic parameters, spheroidal carbonaceous particles and lead suggest that atmospheric pollution has had a significant effect on the sediments of Hagelseewli, but little effect on the water quality as reflected in the lake biota.
Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic
Resumo:
We analyzed fossil chironomids (nonbiting midges) and pollen in two lake-sediment records to reconstruct and quantify Holocene summer-temperature fluctuations in the European Alps. Chironomid and pollen records indicate five centennial-scale cooling episodes during the early- and mid-Holocene. The strongest temperature declines of ≈1°C are inferred at ≈10,700–10,500 and 8,200–7,600 calibrated 14C years B.P., whereas other temperature fluctuations are of smaller amplitude. Two forcing mechanisms have been presented recently to explain centennial-scale climate variability in Europe during the early- and mid-Holocene, both involving changes in Atlantic thermohaline circulation. In the first mechanism, changes in meltwater flux from the North American continent to the North Atlantic are responsible for changes in the Atlantic thermohaline circulation, thereby affecting circum-Atlantic climate. In the second mechanism, solar variability is the cause of Holocene climatic fluctuations, possibly triggering changes in Atlantic thermohaline overturning. Within their dating uncertainty, the two major cooling periods in the European Alps are coeval with substantial changes in the routing of North American freshwater runoff to the North Atlantic, whereas quantitatively, our climatic reconstructions show a poor agreement with available records of past solar activity. Thus, our results suggest that, during the early- and mid-Holocene, freshwater-induced Atlantic circulation changes had stronger influence on Alpine summer temperatures than solar variability and that Holocene thermohaline circulation reductions have led to summer-temperature declines of up to 1°C in central Europe.
Resumo:
1. The cover of plant species was recorded annually from 1988 to 2000 in nine spatially replicated plots in a species-rich, semi-natural meadow at Negrentino (southern Alps). This period showed large climatic variation and included the centennial maximum and minimum frequency of days with ≥ 10 mm of rain. 2. Changes in species composition were compared between three 4-year intervals characterized by increasingly dry weather (1988–91), a preceding extreme drought (1992–95), and increasingly wet weather (1997–2000). Redundancy analysis and anova with repeated spatial replicates were used to find trends in vegetation data across time. 3. Recruitment capacity, the potential for fast clonal growth and seasonal expansion rate were determined for abundant taxa and tested in general linear models (GLM) as predictors for rates of change in relative cover of species across the climatically defined 4-year intervals. 4. Relative cover of the major growth forms present, graminoids and forbs, changed more in the period following extreme drought than at other times. Recruitment capacity was the only predictor of species’ rates of change. 5. Following perturbation, re-colonization was the primary driver of vegetation dynamics. The dominant grasses, which lacked high recruitment from seed, therefore decreased in relative abundance. This effect persisted until the end of the study and may represent a lasting response to an extreme climatic event.
Resumo:
A total of 23 pollen diagrams [stored in the Alpine Palynological Data-Base (ALPADABA), Geobotanical Institute, Bern] cover the last 100 to over 1000 years. The sites include 15 lakes, seven mires, and one soil profile distributed in the Jura Mts (three sites), Swiss Plateau (two sites), northern Pre-Alps and Alps (six sites), central Alps (five sites), southern Alps (three sites), and southern Pre-Alps (four sites) in the western and southern part of Switzerland or just outside the national borders. The pollen diagrams have both a high taxonomic resolution and a high temporal resolution, with sampling distances of 0.5–3 cm, equivalent to 1 to 11 years for the last 100 years and 8 to 130 years for earlier periods. The chronology is based on absolute dating (14 sites: 210Pb 11 sites; 14C six sites; varve counting two sites) or on biostratigraphic correlation among pollen diagrams. The latter relies mainly on trends in Cannabis sativa, Ambrosia, Mercurialis annua, and Ostrya-type pollen. Individual pollen stratigraphies are discussed and sites are compared within each region. The principle of designating local, extra-local, and regional pollen signals and vegetation is exemplified by two pairs of sites lying close together. Trends in biostratigraphies shared by a major part of the pollen diagrams allow the following generalisations. Forest declined in phases since medieval times up to the late 19th century. Abies and Fagus declined consistently, whereas the behaviour of short-lived trees and trees of moist habitats differed among sites (Alnus glutinosa-type, Alnus viridis, Betula, Corylus avellana). In the present century, however, Picea and Pinus increased, followed by Fraxinus excelsior in the second half of this century. Grassland (traced by Gramineae and Plantago lanceolata-type pollen) increased, replacing much of the forest, and declined again in the second half of this century. Nitrate enrichment of the vegetation (traced by Urtica) took place in the first half of this century. These trends reflect the intensification of forest use and the expansion of grassland from medieval times up to the end of the last century, whereas subsequently parts of the grassland became used more intensively and the marginal parts were abandoned for forest regrowth. In most pollen diagrams human impact is the dominant factor in explaining inferred changes in vegetation, but climatic change plays a role at three sites.
Resumo:
Switzerland has an extraordinarily rich archaeological heritage from the Neolithic and the Bronze Age, dating back nearly 7000 years. Since the mid-19th century, the first pile dwellings were discovered in the lakes of the Central Plateau. Since 2011 these sites are part of the UNESCO world heritage „Prehistoric pile-dwellings around the Alps“. Not only lakes, but also Swiss mountains preserve extraordinary archaeological remains: from an alpine pass in the Bernese Alps prehistoric objects are melting out from the ice. Perfect preservation conditions and modern archaeological methods allow exploring the development of early agrarian societies in this part of the world. We can reconstruct their settlements and follow their exchange with other communities. Archaeology under water and in alpine environments allows fascinating insights into the beginnings of our history.
Resumo:
Among the coniferous species, Norway spruce (Picea abies (L.) Karst.) is one of the most important trees in Europe both for economic and ecological aspects, with a long tradition of cultivation. It can be a big tree, reaching 50-60 m in height with a straight and regular trunk, particularly used for timber constructions, pulpwood for paper and furniture. This widespread species dominates the Boreal forests in Northern Europe and the subalpine areas of the Alps and Carpathian Mountains. Thanks to its high performances in different site conditions, it can also be found outside its natural distribution on lower elevations in more temperate forests. Norway spruce has been massively planted up to its niche limits, where it is particularly susceptible to heat and drought, due to its shallow root system. For this reason it is expected to be severely affected under global warming conditions. Disturbed and weakened plants can be easily attacked by rot fungi such as Heterobasidion annosum and Armillaria, or by the bark beetles Ips typographus, one of the most destructive spruce forest pests.
Resumo:
1. The morphologically complex taxon Cyclotella comensis Grunow had no clear relationship with environmental parameters in a study using sediment surface samples from the Swiss Alps. The morphological heterogeneity of the taxon was investigated by applying a principal component analysis (PCA) to 9000 presence/absence descriptions of valves from surface samples of six lakes from different altitudes (15 characteristics, 100 valves each lake). The PCA allowed the classification of six morphs, which differed mainly in size and length of striae. Photographs of the morphs are shown in this paper. 2. Sixty-eight sediment surface samples were analysed using these newly defined six morphs. Summer temperature explained a major part of the variance between the morphs as assessed by a redundancy analysis (RDA). Summer temperature optima and tolerances were estimated using weighted averaging. 3. The influence of the revised C. comensis taxonomy on the diatom inferred summer temperature of a high alpine lake is discussed in a multiproxy context for the past 800 years.