1000 resultados para Alloy Az91d


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports on the corrosion of Mg alloy AZ31 in simulated body fluid (SBF) using static immersion tests and electrochemical impedance spectroscopy. A preliminary study on the effect of flowing SBF on the corrosion behaviour of AZ31 has also been carried out. Low toxicity ionic liquids (ILs) trimethyl(butyl)phosphonium diphenyl phosphate P1444DPP and trihexyl(tetradecyl)-phosphonium bis-2,4,4trimethylpentyl-phosphinate [P66614][ i(C8) 2PO2] have been used to provide corrosion protection for AZ31 in SBF. Time dependent immersion tests indicate that under static conditions, AZ31 suffers severe localised corrosion in SBF, with pits developing predominantly beside the Al-Mn intermetallic phase in the α matrix. At longer immersion times, the corrosion product eventually precipitates and covers the entire specimen surface. When exposed to SBF under flowing conditions with a shear stress of 0·88 Pa, more uniform corrosion was observed. The optical profilometry results and electrochemical impedance spectroscopy analysis suggest that both P
1444DPP and [P66614][i(C8)2PO2] pretreatments can increase the corrosion resistance of AZ31 in SBF, in particular by decreasing the number of deeper pits found on the alloy surface. Cytotoxic test shows that the presence of the ILs P
1444DPP and [P66614][i(C8)2PO2] in cell culture media slightly inhibits the growth of human coronary artery endothelial cells in comparison with the good cell viability around the treated specimen. A pretreatment with IL is used in order to improve the corrosion resistance of this alloy in SBF. © 2012 Institute of Materials, Minerals and Mining.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, wetting characteristics and evolution of microstructure of Sn–3.5Ag solder on Ag/Ni and Ni electroplated 304 stainless steel (304SS) substrates have been investigated. Solder alloy spread on Ag/Ni plated 304SS substrates exhibited better wetting as compared to Ni/304SS substrate. The formations of irregular shaped and coarser IMCs were found at the interface of solder/Ni/304SS substrate region whereas, solder/Ag/Ni/substrate interface showed continuous scallop and needle shaped IMCs. The precipitation of Ag3Sn, Ni–Sn, FeSn2 and lesser percentage of Fe–Cr–Sn IMCs were found at the interface of solder/Ag/Ni/substrate region whereas, solder/Ni/304 SS substrate exhibited predominantly FeSn2 and Fe–Cr–Sn IMCs. Presence of higher amount of Fe–Cr–Sn IMCs at the solder/Ni/304SS substrate interface inhibited the further wetting of solder alloy.