989 resultados para Alaska-Bering-Chukchi_Sea


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km2 valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6–7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8–10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to investigate the potential role of vegetation changes in megafaunal extinctions during the later part of the last glacial stage and early Holocene (42–10 ka BP), the palaeovegetation of northern Eurasia and Alaska was simulated using the LPJ-GUESS dynamic vegetation model. Palaeoclimatic driving data were derived from simulations made for 22 time slices using the Hadley Centre Unified Model. Modelled annual net primary productivity (aNPP) of a series of plant functional types (PFTs) is mapped for selected time slices and summarised for major geographical regions for all time slices. Strong canonical correlations are demonstrated between model outputs and pollen data compiled for the same period and region. Simulated aNPP values, especially for tree PFTs and for a mesophilous herb PFT, provide evidence of the structure and productivity of last glacial vegetation. The mesophilous herb PFT aNPP is higher in many areas during the glacial than at present or during the early Holocene. Glacial stage vegetation, whilst open and largely treeless in much of Europe, thus had a higher capacity to support large vertebrate herbivore populations than did early Holocene vegetation. A marked and rapid decrease in aNPP of mesophilous herbs began shortly after the Last Glacial Maximum, especially in western Eurasia. This is likely implicated in extinction of several large herbivorous mammals during the latter part of the glacial stage and the transition to the Holocene.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The global mean temperature in 2008 was slightly cooler than that in 2007; however, it still ranks within the 10 warmest years on record. Annual mean temperatures were generally well above average in South America, northern and southern Africa, Iceland, Europe, Russia, South Asia, and Australia. In contrast, an exceptional cold outbreak occurred during January across Eurasia and over southern European Russia and southern western Siberia. There has been a general increase in land-surface temperatures and in permafrost temperatures during the last several decades throughout the Arctic region, including increases of 1° to 2°C in the last 30 to 35 years in Russia. Record setting warm summer (JJA) air temperatures were observed throughout Greenland. The year 2008 was also characterized by heavy precipitation in a number of regions of northern South America, Africa, and South Asia. In contrast, a prolonged and intense drought occurred during most of 2008 in northern Argentina, Paraguay, Uruguay, and southern Brazil, causing severe impacts to agriculture and affecting many communities. The year began with a strong La Niña episode that ended in June. Eastward surface current anomalies in the tropical Pacific Ocean in early 2008 played a major role in adjusting the basin from strong La Niña conditions to ENSO-neutral conditions by July–August, followed by a return to La Niña conditions late in December. The La Niña conditions resulted in far-reaching anomalies such as a cooling in the central tropical Pacific, Arctic Ocean, and the regions extending from the Gulf of Alaska to the west coast of North America; changes in the sea surface salinity and heat content anomalies in the tropics; and total column water vapor, cloud cover, tropospheric temperature, and precipitation patterns typical of a La Niña. Anomalously salty ocean surface salinity values in climatologically drier locations and anomalously fresh values in rainier locations observed in recent years generally persisted in 2008, suggesting an increase in the hydrological cycle. The 2008 Atlantic hurricane season was the 14th busiest on record and the only season ever recorded with major hurricanes each month from July through November. Conversely, activity in the northwest Pacific was considerably below normal during 2008. While activity in the north Indian Ocean was only slightly above average, the season was punctuated by Cyclone Nargis, which killed over 145,000 people; in addition, it was the seventh-strongest cyclone ever in the basin and the most devastating to hit Asia since 1991. Greenhouse gas concentrations continued to rise, increasing by more than expected based on with CO2 the 1979 to 2007 trend. In the oceans, the global mean uptake for 2007 is estimated to be 1.67 Pg-C, about CO2 0.07 Pg-C lower than the long-term average, making it the third-largest anomaly determined with this method since 1983, with the largest uptake of carbon over the past decade coming from the eastern Indian Ocean. Global phytoplankton chlorophyll concentrations were slightly elevated in 2008 relative to 2007, but regional changes were substantial (ranging to about 50%) and followed long-term patterns of net decreases in chlorophyll with increasing sea surface temperature. Ozone-depleting gas concentrations continued to fall globally to about 4% below the peak levels of the 2000–02 period. Total column ozone concentrations remain well below pre-1980, levels and the 2008 ozone hole was unusually large (sixth worst on record) and persistent, with low ozone values extending into the late December period. In fact the polar vortex in 2008 persisted longer than for any previous year since 1979. Northern Hemisphere snow cover extent for the year was well below average due in large part to the record-low ice extent in March and despite the record-maximum coverage in January and the shortest snow cover duration on record (which started in 1966) in the North American Arctic. Limited preliminary data imply that in 2008 glaciers continued to lose mass, and full data for 2007 show it was the 17th consecutive year of loss. The northern region of Greenland and adjacent areas of Arctic Canada experienced a particularly intense melt season, even though there was an abnormally cold winter across Greenland's southern half. One of the most dramatic signals of the general warming trend was the continued significant reduction in the extent of the summer sea-ice cover and, importantly, the decrease in the amount of relatively older, thicker ice. The extent of the 2008 summer sea-ice cover was the second-lowest value of the satellite record (which started in 1979) and 36% below the 1979–2000 average. Significant losses in the mass of ice sheets and the area of ice shelves continued, with several fjords on the northern coast of Ellesmere Island being ice free for the first time in 3,000–5,500 years. In Antarctica, the positive phase of the SAM led to record-high total sea ice extent for much of early 2008 through enhanced equatorward Ekman transport. With colder continental temperatures at this time, the 2007–08 austral summer snowmelt season was dramatically weakened, making it the second shortest melt season since 1978 (when the record began). There was strong warming and increased precipitation along the Antarctic Peninsula and west Antarctica in 2008, and also pockets of warming along coastal east Antarctica, in concert with continued declines in sea-ice concentration in the Amundsen/Bellingshausen Seas. One significant event indicative of this warming was the disintegration and retreat of the Wilkins Ice Shelf in the southwest peninsula area of Antarctica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective biomization method developed by Prentice et al. (1996) for Europe was extended using modern pollen samples from Beringia and then applied to fossil pollen data to reconstruct palaeovegetation patterns at 6000 and 18,000 14C yr bp. The predicted modern distribution of tundra, taiga and cool conifer forests in Alaska and north-western Canada generally corresponds well to actual vegetation patterns, although sites in regions characterized today by a mosaic of forest and tundra vegetation tend to be preferentially assigned to tundra. Siberian larch forests are delimited less well, probably due to the extreme under-representation of Larix in pollen spectra. The biome distribution across Beringia at 6000 14C yr bp was broadly similar to today, with little change in the northern forest limit, except for a possible northward advance in the Mackenzie delta region. The western forest limit in Alaska was probably east of its modern position. At 18,000 14C yr bp the whole of Beringia was covered by tundra. However, the importance of the various plant functional types varied from site to site, supporting the idea that the vegetation cover was a mosaic of different tundra types.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[1] An eddy-permitting ¼° global ocean reanalysis based on the Operational Met Office FOAM data assimilation system has been run for 1989–2010 forced by ERA-Interim meteorology. Freshwater and heat transports are compared with published estimates globally and in each basin, with special focus on the Atlantic. The meridional transports agree with observations within errors at most locations, but where eddies are active the transports by the mean flow are nearly always in better agreement than the total transports. Eddy transports are down gradient and are enhanced relative to a free run. They may oppose or reinforce mean transports and provide 40–50% of the total transport near midlatitude fronts, where eddies with time scales <1 month provide up to 15%. Basin-scale freshwater convergences are calculated with the Arctic/Atlantic, Indian, and Pacific oceans north of 32°S, all implying net evaporation of 0.33 ± 0.04 Sv, 0.65 ± 0.07 Sv, and 0.09 ± 0.04 Sv, respectively, within the uncertainty of observations in the Atlantic and Pacific. The Indian is more evaporative and the Southern Ocean has more precipitation (1.07 Sv). Air-sea fluxes are modified by assimilation influencing turbulent heat fluxes and evaporation. Generally, surface and assimilation fluxes together match the meridional transports, indicating that the reanalysis is close to a steady state. Atlantic overturning and gyre transports are assessed with overturning freshwater transports southward at all latitudes. At 26°N eddy transports are negligible, overturning transport is 0.67 ± 0.19 Sv southward and gyre transport is 0.44 ± 0.17 Sv northward, with divergence between 26°N and the Bering Strait of 0.13 ± 0.23 Sv over 2004–2010.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance of including a more realistic treatment of aerosol–cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex aerosol schemes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous climate model simulations have shown that the configuration of the Earth's orbit during the early to mid-Holocene (approximately 10–5 kyr) can account for the generally warmer-than-present conditions experienced by the high latitudes of the northern hemisphere. New simulations for 6 kyr with two atmospheric/mixed-layer ocean models (Community Climate Model, version 1, CCMl, and Global ENvironmental and Ecological Simulation of Interactive Systems, version 2, GENESIS 2) are presented here and compared with results from two previous simulations with GENESIS 1 that were obtained with and without the albedo feedback due to climate-induced poleward expansion of the boreal forest. The climate model results are summarized in the form of potential vegetation maps obtained with the global BIOME model, which facilitates visual comparisons both among models and with pollen and plant macrofossil data recording shifts of the forest-tundra boundary. A preliminary synthesis shows that the forest limit was shifted 100–200 km north in most sectors. Both CCMl and GENESIS 2 produced a shift of this magnitude. GENESIS 1 however produced too small a shift, except when the boreal forest albedo feedback was included. The feedback in this case was estimated to have amplified forest expansion by approximately 50%. The forest limit changes also show meridional patterns (greatest expansion in central Siberia and little or none in Alaska and Labrador) which have yet to be reproduced by models. Further progress in understanding of the processes involved in the response of climate and vegetation to orbital forcing will require both the deployment of coupled atmosphere-biosphere-ocean models and the development of more comprehensive observational data sets

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Considerable progress has been made in understanding the present and future regional and global sea level in the 2 years since the publication of the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change. Here, we evaluate how the new results affect the AR5’s assessment of (i) historical sea level rise, including attribution of that rise and implications for the sea level budget, (ii) projections of the components and of total global mean sea level (GMSL), and (iii) projections of regional variability and emergence of the anthropogenic signal. In each of these cases, new work largely provides additional evidence in support of the AR5 assessment, providing greater confidence in those findings. Recent analyses confirm the twentieth century sea level rise, with some analyses showing a slightly smaller rate before 1990 and some a slightly larger value than reported in the AR5. There is now more evidence of an acceleration in the rate of rise. Ongoing ocean heat uptake and associated thermal expansion have continued since 2000, and are consistent with ocean thermal expansion reported in the AR5. A significant amount of heat is being stored deeper in the water column, with a larger rate of heat uptake since 2000 compared to the previous decades and with the largest storage in the Southern Ocean. The first formal detection studies for ocean thermal expansion and glacier mass loss since the AR5 have confirmed the AR5 finding of a significant anthropogenic contribution to sea level rise over the last 50 years. New projections of glacier loss from two regions suggest smaller contributions to GMSL rise from these regions than in studies assessed by the AR5; additional regional studies are required to further assess whether there are broader implications of these results. Mass loss from the Greenland Ice Sheet, primarily as a result of increased surface melting, and from the Antarctic Ice Sheet, primarily as a result of increased ice discharge, has accelerated. The largest estimates of acceleration in mass loss from the two ice sheets for 2003–2013 equal or exceed the acceleration of GMSL rise calculated from the satellite altimeter sea level record over the longer period of 1993–2014. However, when increased mass gain in land water storage and parts of East Antarctica, and decreased mass loss from glaciers in Alaska and some other regions are taken into account, the net acceleration in the ocean mass gain is consistent with the satellite altimeter record. New studies suggest that a marine ice sheet instability (MISI) may have been initiated in parts of the West Antarctic Ice Sheet (WAIS), but that it will affect only a limited number of ice streams in the twenty-first century. New projections of mass loss from the Greenland and Antarctic Ice Sheets by 2100, including a contribution from parts of WAIS undergoing unstable retreat, suggest a contribution that falls largely within the likely range (i.e., two thirds probability) of the AR5. These new results increase confidence in the AR5 likely range, indicating that there is a greater probability that sea level rise by 2100 will lie in this range with a corresponding decrease in the likelihood of an additional contribution of several tens of centimeters above the likely range. In view of the comparatively limited state of knowledge and understanding of rapid ice sheet dynamics, we continue to think that it is not yet possible to make reliable quantitative estimates of future GMSL rise outside the likely range. Projections of twenty-first century GMSL rise published since the AR5 depend on results from expert elicitation, but we have low confidence in conclusions based on these approaches. New work on regional projections and emergence of the anthropogenic signal suggests that the two commonly predicted features of future regional sea level change (the increasing tilt across the Antarctic Circumpolar Current and the dipole in the North Atlantic) are related to regional changes in wind stress and surface heat flux. Moreover, it is expected that sea level change in response to anthropogenic forcing, particularly in regions of relatively low unforced variability such as the low-latitude Atlantic, will be detectable over most of the ocean by 2040. The east-west contrast of sea level trends in the Pacific observed since the early 1990s cannot be satisfactorily accounted for by climate models, nor yet definitively attributed either to unforced variability or forced climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim: The aim of the study was to evaluate the association between Helicobacter pylori infection and iron deficiency (ID) in adolescents attending a public school. Patients and Methods: From March to June 2001, a cross-sectional study was conducted among adolescents (10-16 years) enrolled in a single public school in Sao Paulo, Brazil. Of 400 eligible students, 195 agreed to participate, but 1 was excluded due to sickle cell disease. A blood sample was collected from each subject to measure hemoglobin and ferritin. H pylori status was investigated with the 13 C-urea breath test. All of the subjects with either anemia or ID were given iron therapy. Results: H pylori prevalence was 40.7% (79/194), being higher in male subjects (45/90 vs 34/104, P = 0.014). There was no relation between infection and nutritional status. Abnormally low serum ferritin was observed in 12 subjects, half of whom were positive for H pylori (odds ratio [OR] 1.49, 95% confidence interval [CI] 0.38-5.81). The median serum ferritin was 33.6 ng/mL (interquartile range 23.9-50.9) in infected subjects and 35.1 ng/mL (interquartile range 23.7-53.9) in uninfected subjects. Anemia was detected in 2% (4/194) of the students, half of whom were infected (OR 1.47, 95% CI 0.1-20.6). The mean hemoglobin value in infected subjects was 13.83 g/dL +/- 1.02 versus 14 g/dL +/- 1.06 in uninfected subjects. Conclusions: The study was not able to find a relation between H pylori infection and ID or anemia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS) contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in the Arctic. The aim of this article is to identify the two-way relationship between AOS and tourism. On the one hand, tourism activities account for diverse changes across a broad spectrum of impact fields. On the other hand, due to its multiple and diverse agents and far-reaching activities, tourism is also well-positioned to collect observational data and participate as an actor in monitoring activities. To accomplish our goals, we provide an inventory of tourism-embedded issues and concerns of interest to AOS from a range of destinations in the circumpolar Arctic region, including Alaska, Arctic Canada, Iceland, Svalbard, the mainland European Arctic and Russia. The article also draws comparisons with the situation in Antarctica. On the basis of a collective analysis provided by members of the International Polar Tourism Research Network from across the polar regions, we conclude that the potential role for tourism in the development and implementation of AOS is significant and has been overlooked.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Professor Emeritus David Firmage, Department of Biology and Environmental Studies. Reading Looking for Alaska by Peter Jenkins

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A database of 4471 Roadian–Wordian (Guadalupian, Middle Permian) occurrences of 381 brachiopod genera in 44 different operational geographical units (stations) was analyzed by both Q-mode and R-mode quantitative methods. Four distinct brachiopod biogeographical realms and nine provinces, and 11 brachiopod associations are recognized. The Boreal Realm in the Northern Hemisphere includes the Verkolyman Province in the northern and northeastern Siberian Platform and the eastern European Province in the Ural seaway between the European and Siberian platforms. Both provinces are characterized by containing typical Boreal cold-water brachiopod associations. The Gondwanan Realm in the south also includes two provinces. The Austrazean Province in eastern Australia and New Zealand is probably the most stable province throughout the Permian and characterized by typical Gondwanan brachiopod associations. The Westralian Province centered in Western Australia is also characterized by typical Gondwanan brachiopods, but also demonstrates biogeographical links with the Tethyan stations. The Palaeoequatorial Realm located mainly in the palaeotropical zone contains highly diverse and abundant brachiopod faunas. Two regions/subrealms and four provinces are recognized within this realm. The North America Subrealm contains a distinct Grandian Province characterized by many endemic brachiopod genera and a few coldwater genera. East-central Alaska and Yukon Territory may constitute another brachiopod province. All the stations in the Tethyan Ocean (both Palaeotethys and Neotethys) constitute a distinct Asian–Tethyan Region/ Subrealm and incorporate three different provinces. The Cathaysian Province is comprised of the stations in South China and its surrounding terranes/blocks and a few stations in the northern and western margin of the Palaeotethys. Two transitional provinces (Sino–Mongolian–Japanese Province and Cimmerian Province) in the northern and southern temperate zones are also recognizable. The brachiopod fauna from the Mino Belt in Japan is well distinguished from those from other regions, and is hence assigned to the palaeoceanic Panthalassan Realm. Principal coordinates analysis and minimum spanning tree analysis suggest that a latitude-related thermal gradient was the major control for the palaeobiogeography of Roadian–Wordian global brachiopod faunas and for the latitudinal of pattern of decreasing brachiopod generic diversities from the equator to the poles. In addition, geographic separation and oceanic currents may also have played some role in the spatial distribution of brachiopods during Roadian–Wordian times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this chapter is to establish values as a key component of science and environmental education, consistent with the troika framework, and to explore the implications of this for teacher education. In the chapter, we review research that has increasingly placed values at the centre of the process of learning science, and central also in framing students' responses to school science. We then present findings from three projects that explore the relationship of values to teaching and learning science: first, an exploration of the pedagogies of effective teachers of science; second,an environmental education project in which students explore science and sustainability ideas in the context of a community exchange program in Mexico and Alaska; and, third, a teachcr education initiative focused on place-based education. In the chapter, we argue that learning science and engaging with the environment entails pedagogies that link conceptual learning, values and community.