986 resultados para Aeroelascity, Optimization, Uncertainty
Resumo:
The concepts of reliability, robustness, adaptability, versatility, resilience and flexibility have been used to describe how a system design can mitigate the likely impact of uncertainties without removing their sources. With the increasing number of publications on designing systems to have such ilities, there is a need to clarify the relationships between the different ideas. This short article introduces a framework to compare these different ways in which a system can be insensitive to uncertainty, clarifying their meaning in the context of complex system design. We focus on relationships between the ilities listed above and do not discuss in detail methods to design-for-ilities. © 2013 The Author(s). Published by Taylor & Francis.
Resumo:
In this paper we study the optimization of interleaved Mach-Zehnder silicon carrier depletion electro-optic modulator. Following the simulation results we demonstrate a phase shifter with the lowest figure of merit (modulation efficiency multiplied by the loss per unit length) 6.7 V-dB. This result was achieved by reducing the junction width to 200 nm along the phase-shifter and optimizing the doping levels of the PN junction for operation in nearly fully depleted mode. The demonstrated low FOM is the result of both low V(π)L of ~0.78 Vcm (at reverse bias of 1V), and low free carrier loss (~6.6 dB/cm for zero bias). Our simulation results indicate that additional improvement in performance may be achieved by further reducing the junction width followed by increasing the doping levels.
Resumo:
We design, optimize and demonstrate a highly efficient carrier-depletion silicon Mach-Zehnder modulator with very low VπL of ~0.2Vcm. Design consideration, fabrication process and experimental results will be presented. © OSA 2013.
Resumo:
The paper addresses the problem of low-rank trace norm minimization. We propose an algorithm that alternates between fixed-rank optimization and rank-one updates. The fixed-rank optimization is characterized by an efficient factorization that makes the trace norm differentiable in the search space and the computation of duality gap numerically tractable. The search space is nonlinear but is equipped with a Riemannian structure that leads to efficient computations. We present a second-order trust-region algorithm with a guaranteed quadratic rate of convergence. Overall, the proposed optimization scheme converges superlinearly to the global solution while maintaining complexity that is linear in the number of rows and columns of the matrix. To compute a set of solutions efficiently for a grid of regularization parameters we propose a predictor-corrector approach that outperforms the naive warm-restart approach on the fixed-rank quotient manifold. The performance of the proposed algorithm is illustrated on problems of low-rank matrix completion and multivariate linear regression. © 2013 Society for Industrial and Applied Mathematics.
Resumo:
This paper is concerned with the development of efficient algorithms for propagating parametric uncertainty within the context of the hybrid Finite Element/Statistical Energy Analysis (FE/SEA) approach to the analysis of complex vibro-acoustic systems. This approach models the system as a combination of SEA subsystems and FE components; it is assumed that the FE components have fully deterministic properties, while the SEA subsystems have a high degree of randomness. The method has been recently generalised by allowing the FE components to possess parametric uncertainty, leading to two ensembles of uncertainty: a non-parametric one (SEA subsystems) and a parametric one (FE components). The SEA subsystems ensemble is dealt with analytically, while the effect of the additional FE components ensemble can be dealt with by Monte Carlo Simulations. However, this approach can be computationally intensive when applied to complex engineering systems having many uncertain parameters. Two different strategies are proposed: (i) the combination of the hybrid FE/SEA method with the First Order Reliability Method which allows the probability of the non-parametric ensemble average of a response variable exceeding a barrier to be calculated and (ii) the combination of the hybrid FE/SEA method with Laplace's method which allows the evaluation of the probability of a response variable exceeding a limit value. The proposed approaches are illustrated using two built-up plate systems with uncertain properties and the results are validated against direct integration, Monte Carlo simulations of the FE and of the hybrid FE/SEA models. © 2013 Elsevier Ltd.
Resumo:
Vibration and acoustic analysis at higher frequencies faces two challenges: computing the response without using an excessive number of degrees of freedom, and quantifying its uncertainty due to small spatial variations in geometry, material properties and boundary conditions. Efficient models make use of the observation that when the response of a decoupled vibro-acoustic subsystem is sufficiently sensitive to uncertainty in such spatial variations, the local statistics of its natural frequencies and mode shapes saturate to universal probability distributions. This holds irrespective of the causes that underly these spatial variations and thus leads to a nonparametric description of uncertainty. This work deals with the identification of uncertain parameters in such models by using experimental data. One of the difficulties is that both experimental errors and modeling errors, due to the nonparametric uncertainty that is inherent to the model type, are present. This is tackled by employing a Bayesian inference strategy. The prior probability distribution of the uncertain parameters is constructed using the maximum entropy principle. The likelihood function that is subsequently computed takes the experimental information, the experimental errors and the modeling errors into account. The posterior probability distribution, which is computed with the Markov Chain Monte Carlo method, provides a full uncertainty quantification of the identified parameters, and indicates how well their uncertainty is reduced, with respect to the prior information, by the experimental data. © 2013 Taylor & Francis Group, London.
Resumo:
This paper provides an introduction to the topic of optimization on manifolds. The approach taken uses the language of differential geometry, however,we choose to emphasise the intuition of the concepts and the structures that are important in generating practical numerical algorithms rather than the technical details of the formulation. There are a number of algorithms that can be applied to solve such problems and we discuss the steepest descent and Newton's method in some detail as well as referencing the more important of the other approaches.There are a wide range of potential applications that we are aware of, and we briefly discuss these applications, as well as explaining one or two in more detail. © 2010 Springer -Verlag Berlin Heidelberg.
Resumo:
The optimization of a near-circular low-Earth-orbit multispacecraft refueling problem is studied. The refueling sequence, service time, and orbital transfer time are used as design variables, whereas the mean mission completion time and mean propellant consumed by orbital maneuvers are used as design objectives. The J2 term of the Earth's nonspherical gravity perturbation and the constraints of rendezvous time windows are taken into account. A hybridencoding genetic algorithm, which uses normal fitness assignment to find the minimum mean propellant-cost solution and fitness assignment based on the concept of Pareto-optimality to find multi-objective optimal solutions, is presented. The proposed approach is demonstrated for a typical multispacecraft refueling problem. The results show that the proposed approach is effective, and that the J2 perturbation and the time-window constraints have considerable influences on the optimization results. For the problems in which the J2 perturbation is not accounted for, the optimal refueling order can be simply determined as a sequential order or as the order only based on orbitalplane differences. In contrast, for the problems that do consider the J2 perturbation, the optimal solutions obtained have a variety of refueling orders and use the drift of nodes effectively to reduce the propellant cost for eliminating orbital-plane differences. © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
In this study, optimization of operational conditions of a submerged membrane bioreactor treating municipal waste-water was studied. Mixed liquid suspended solid (MLSS), membrane flux (J(v)), aeration (Q), ratio of pumping, time to break time (t(p)/t(b)), and ratio of up flow area to down flow area (A Ad) were chosen as the easily manipulable parameters to study their effects on removal efficiency and membrane fouling. Totally, 16 different runs were designed to compare and select the best combination of the 5 parameters. The results showed that the optimal operational conditions were MLSS = 7g(.)L(-1), J(v) = 10L(.)m(-2.)h(-1), Q = 6 m(3.)h(-1), t(p)/t(b)= 4 min/1 min, and A(r)/A(d) = 1.7 m(2)/m(2). Under such conditions, the SMBR could achieve a double win of high removal efficiency and low membrane fouling.
Resumo:
There is a need for a stronger theoretical understanding of Multidisciplinary Design Optimization (MDO) within the field. Having developed a differential geometry framework in response to this need, we consider how standard optimization algorithms can be modeled using systems of ordinary differential equations (ODEs) while also reviewing optimization algorithms which have been derived from ODE solution methods. We then use some of the framework's tools to show how our resultant systems of ODEs can be analyzed and their behaviour quantitatively evaluated. In doing so, we demonstrate the power and scope of our differential geometry framework, we provide new tools for analyzing MDO systems and their behaviour, and we suggest hitherto neglected optimization methods which may prove particularly useful within the MDO context. Copyright © 2013 by ASME.
Resumo:
Fuel treatment is considered a suitable way to mitigate the hazard related to potential wildfires on a landscape. However, designing an optimal spatial layout of treatment units represents a difficult optimization problem. In fact, budget constraints, the probabilistic nature of fire spread and interactions among the different area units composing the whole treatment, give rise to challenging search spaces on typical landscapes. In this paper we formulate such optimization problem with the objective of minimizing the extension of land characterized by high fire hazard. Then, we propose a computational approach that leads to a spatially-optimized treatment layout exploiting Tabu Search and General-Purpose computing on Graphics Processing Units (GPGPU). Using an application example, we also show that the proposed methodology can provide high-quality design solutions in low computing time. © 2013 The Authors. Published by Elsevier B.V.
Resumo:
Ring rolling is an incremental bulk forming process for the near-net-shape production of seamless rings. This paper shows how nowadays the process design and optimization can be efficiently supported by simulation methods. For reliable predictions of the material flow and the microstructure evolution it's necessary to include a real ring rolling mill's control algorithm into the model. Furthermore an approach for the online measurement of the profile evolution during the process is presented by means of axial profiling in ring rolling. Hence the definition of new ring rolling strategies is possible even for advanced geometries.
Resumo:
In typical conventional foundation design, the inherent variability of soil properties, model uncertainty and construction variability are not modeled explicitly. A main drawback of this is that the effect of each variability on the probability of an unfavorable event cannot be evaluated quantitatively. In this paper, a method to evaluate the uncertainty-reduction effect on the performance of a vertically-loaded pile foundation by monitoring the pile performance (such as pile load testing or placing sensors in piles) is proposed. The effectiveness of the proposed method is examined based on the investigation of a 120-pile foundation placed on three different ground profiles. The computed results show the capability of evaluating the uncertainty-reduction effect on the performance of a pile foundation by monitoring. © 2014 Taylor & Francis Group, London.
Resumo:
The delivery of integrated product and service solutions is growing in the aerospace industry, driven by the potential of increasing profits. Such solutions require a life cycle view at the design phase in order to support the delivery of the equipment. The influence of uncertainty associated with design for services is increasingly a challenge due to information and knowledge constraints. There is a lack of frameworks that aim to define and quantify relationship between information and knowledge with uncertainty. Driven by this gap, the paper presents a framework to illustrate the link between uncertainty and knowledge within the design context for services in the aerospace industry. The paper combines industrial interaction and literature review to initially define the design attributes, the associated knowledge requirements and the uncertainties experienced. The framework is then applied in three cases through development of causal loop models (CLMs), which are validated by industrial and academic experts. The concepts and inter-linkages are developed with the intention of developing a software prototype. Future recommendations are also included. © 2014 CIRP.