975 resultados para Aerials Photographs - Everglades - Fla.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerial photography was used to determine the land use in a test area of the Nigerian savanna in 1950 and 1972. Changes in land use were determined and correlated with accessibility, appropriate low technology methods being used to make it easy to extend the investigation to other areas without incurring great expense. A test area of 750 sq km was chosen located in Kaduna State of Nigeria. The geography of the area is summarised together with the local knowledge which is essential for accurate photo interpretation. A land use classification was devised and tested for use with medium scale aerial photography of the savanna. The two sets of aerial photography at 1:25 000 scale were sampled using systematic dot grids. A dot density of 8 1/2 dots per sq km was calculated to give an acceptable estimate of land use. Problems of interpretation included gradation between categories, sample position uncertainty and personal bias. The results showed that in 22 years the amount of cultivated land in the test area had doubled while there had been a corresponding decrease in the amount of uncultivated land particularly woodland. The intensity of land use had generally increased. The distribution of land use changes was analysed and correlated with accessibility. Highly significant correlations were found for 1972 which had not existed in 1950. Changes in land use could also be correlated with accessibility. It was concluded that in the 22 year test period there had been intensification of land use, movement of human activity towards the main road, and a decrease in natural vegetation particularly close to the road. The classification of land use and the dot grid method of survey were shown to be applicable to a savanna test area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural, unenriched Everglades wetlands are known to be limited by phosphorus (P) and responsive to P enrichment. However, whole-ecosystem evaluations of experimental P additions are rare in Everglades or other wetlands. We tested the response of the Everglades wetland ecosystem to continuous, low-level additions of P (0, 5, 15, and 30 μg L−1 above ambient) in replicate, 100 m flow-through flumes located in unenriched Everglades National Park. After the first six months of dosing, the concentration and standing stock of phosphorus increased in the surface water, periphyton, and flocculent detrital layer, but not in the soil or macrophytes. Of the ecosystem components measured, total P concentration increased the most in the floating periphyton mat (30 μg L−1: mean = 1916 μg P g−1, control: mean = 149 μg P g−1), while the flocculent detrital layer stored most of the accumulated P (30 μg L−1: mean = 1.732 g P m−2, control: mean = 0.769 g P m−2). Significant short-term responses of P concentration and standing stock were observed primarily in the high dose (30 μg L−1 above ambient) treatment. In addition, the biomass and estimated P standing stock of aquatic consumers increased in the 30 and 5 μg L−1 treatments. Alterations in P concentration and standing stock occurred only at the upstream ends of the flumes nearest to the point source of added nutrient. The total amount of P stored by the ecosystem within the flume increased with P dosing, although the ecosystem in the flumes retained only a small proportion of the P added over the first six months. These results indicate that oligotrophic Everglades wetlands respond rapidly to short-term, low-level P enrichment, and the initial response is most noticeable in the periphyton and flocculent detrital layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acoustic velocity meter (AVM) sites, located both distant and adjacent to canal water control structures, were constructed and calibrated in L-31W borrow canal and Canal 111 (C-111) to measure canal water velocity. Data were used to compute monthly discharge volumes and overall water budgets for several canal reaches from August 1994 to May 1996. The water budgets indicated extensive aquifer inflows in L-31W associated, in part, with S-332 pump station return flows. Canal and groundwater piezometer data showed 5 distinct hydrologic scenarios (distinguished by the direction and magnitude of hydraulic gradients) in the important Frog Pond area on the eastern boundary of the Everglades National Park. Most of the water lost from C-111 was via surface water losses near the outlet of the system, close to Florida Bay. The distribution of flows during the study suggest an alteration of the present South Dade Conveyance System modification plan to improve water deliveries to Taylor Slough and the Eastern Panhandle of the Everglades National Park. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water management has altered both the natural timing and volume of freshwater delivered to Everglades National Park. This is especially true for Taylor Slough and the C-111 basin, as hypersaline events in Florida Bay have been linked to reduced freshwater flow in this area. In light of recent efforts to restore historical flows to the eastern Everglades, an understanding of the impact of this hydrologic shift is needed in order to predict the trajectory of restoration. I conducted a study to assess the importance of season, water chemistry, and hydrologic conditions on the exchange of nutrients in dwarf and fringe mangrove wetlands along Taylor Slough. I also performed mangrove leaf decomposition studies to determine the contribution of biotic and abiotic processes to mass loss, the effect of salinity and season on degradation rates, and the importance of this litter component as a rapid source of nutrients. ^ Dwarf mangrove wetlands consistently imported total nutrients (C, N, and P) and released NO2− +NO3 −, with enhanced release during the dry season. Ammonium flux shifted from uptake to release over the study period. Dissolved phosphate activity was difficult to discern in either wetland, as concentrations were often below detection limits. Fluxes of dissolved inorganic nitrogen in the fringe wetland were positively related to DIN concentrations. The opposite was found for total nitrogen in the fringe wetland. A dynamic budget revealed a net annual export of TN to Florida Bay that was highest during the wet season. Simulated increases and decreases in freshwater flow yielded reduced exports of TN to Florida Bay as a result of changes in subsystem and water flux characteristics. Finally, abiotic processes yielded substantial nutrient and mass losses from senesced leaves with little influence of salinity. Dwarf mangrove leaf litter appeared to be a considerable source of nutrients to the water column of this highly oligotrophic wetland. To summarize, nutrient dynamics at the subsystem level were sensitive to short-term changes in hydrologic and seasonal conditions. These findings suggest that increased freshwater flow has the potential to lead to long-term, system-level changes that may reach as far as eastern Florida Bay. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation examines the sociological process of conflict resolution and consensus building in South Florida Everglades Ecosystem Restoration through what I define as a Network Management Coordinative Interstitial Group (NetMIG). The process of conflict resolution can be summarized as the participation of interested and affected parties (stakeholders) in a forum of negotiation. I study the case of the Governor's Commission for a Sustainable South Florida (GCSSF) that was established to reduce social conflict. Such conflict originated from environmental disputes about the Everglades and was manifested in the form of gridlock among regulatory (government) agencies, Indian tribes, as well as agricultural, environmental conservationist and urban development interests. The purpose of the participatory forum is to reduce conflicts of interest and to achieve consensus, with the ultimate goal of restoration of the original Everglades ecosystem, while cultivating the economic and cultural bases of the communities in the area. Further, the forum aim to formulate consensus through envisioning a common sustainable community by providing means to achieve a balance between human and natural systems. ^ Data were gathered using participant observation and document analysis techniques to conduct a theoretically based analysis of the role of the Network Management Coordinative Interstitial Group (NetMIG). I use conflict resolution theory, environmental conflict theory, stakeholder analysis, systems theory, differentiation and social change theory, and strategic management and planning theory. ^ The purpose of this study is to substantiate the role of the Governor's Commission for a Sustainable South Florida (GCSSF) as a consortium of organizations in an effort to resolve conflict rather than an ethnographic study of this organization. Environmental restoration of the Everglades is a vehicle for recognizing the significance of a Network Management Coordinative Interstitial Group (NetMIG), namely the Governor's Commission for a Sustainable South Florida (GCSSF), as a structural mechanism for stakeholder participation in the process of social conflict resolution through the creation of new cultural paradigms for a sustainable community. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrology and a history of oligotrophy unite the massive landscape comprising freshwater marsh in Everglades National Park. With restoration of water flow to the Everglades, phosphorus (P) enrichment, both from agricultural and domestic sources, may increase nutrient load to the marsh ecosystem. Previous research of P enrichment of Everglades soil, periphyton, and macrophytes revealed each of these ecosystem components responds to increased P loads with increased production and nutrient content. Interactions among these ecosystem components and how P affects the magnitude and direction of interaction are poorly understood and are the focus of my research. Here I present results of a two-year, two-factor experiment of P enrichment and manipulation in Everglades National Park. I quantified biomass, nutrient content, and production for periphyton and macrophyes and found macrophyte removal drives change in nutrient content, biomass, and production of periphyton. Periphyton removal did not appear to control macrophyte dynamics. Soil chemical and physical characteristics were explained primarily by site differences but there was an enrichment effect of soil porewater nitrite + nitrate, nitrite, and soluble reactive phosphorus. Flocculent materials production and depth were significantly affected by macrophyte removal where depth and production were significantly greater with the no macrophyte treatment. The dominant macrophyte of the marsh, Eleocharis cellulosa, increased more in the unenriched marsh than in the enriched marsh. The combination of these findings suggests that dynamics in floc and periphyton are controlled primarily by the presence of periphyton and that this relationship is significantly affected by low-level P enrichment. These results may be valuable in their application to both managers and policy makers who are involved in the Everglades restoration process. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This project examined the pathways of mercury (Hg) bioaccumulation and its relation to trophic position and hydroperiod in the Everglades. I described fish-diet differences across habitats and seasons by analyzing stomach contents of 4,000 fishes of 32 native and introduced species. Major foods included periphyton, detritus/algal conglomerate, small invertebrates, aquatic insects, decapods, and fishes. Florida gar, largemouth bass, pike killifish, and bowfin were at the top of the piscine food web. Using prey volumes, I quantitatively classified the fishes into trophic groups of herbivores, omnivores, and carnivores. Stable-isotope analysis of fishes and invertebrates gave an independent and similar assessment of trophic placement. Trophic patterns were similar to those from tropical communities. I tested for correlations of trophic position and total mercury. Over 4,000 fish, 620 invertebrate, and 46 plant samples were analyzed for mercury with an atomic-fluorescence spectrometer. Mercury varied within and among taxa. Invertebrates ranged from 25–200 ng g −1 ww. Small-bodied fishes varied from 78–>400 ng g −1 ww. Large predatory fishes were highest, reaching a maximum of 1,515 ng−1 ww. Hg concentrations in both fishes and invertebrates were positively correlated with trophic position. I examined the effects of season and hydroperiod on mercury in wild and caged mosquitofish at three pairs of marshes. Nine monthly collections of wild mosquitofish were analyzed. Hydroperiod-within-site significantly affected concentrations but it interacted with sampling period. To control for wild-fish dispersal, and to measure in situ uptake and growth, I placed captive-reared, neonate mosquitofish with mercury levels from 7–14 ng g−1 ww into field cages in the six study marshes in six trials. Uptake rates ranged from 0.25–3.61 ng g−1 ww d −1. As with the wild fish, hydroperiod-within-site was a significant main effect that also interacted with sampling period. Survival exceeded 80%. Growth varied with season and hydroperiod, with greatest growth in short-hydroperiod marshes. The results suggest that dietary bioaccumulation determined mercury levels in Everglades aquatic animals, and that, although hydroperiod affected mercury uptake, its effect varied with season. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroperiod, or the distribution, duration and timing of flooding affects both plant and animal distributions. The Florida Everglades is currently undergoing restoration that will result in altered hydroperiods. This study was conducted in Everglades National Park to document the variability in periphyton community structure and function between long and short hydroperiod Everglades marshes. Periphyton is an important primary producer and important food resource in the Everglades. Periphyton is also involved in marl soil formation and nutrient cycling. Although periphyton is an important component of the Everglades landscape, little is known about periphyton structural-functional variation between hydroperiods. ^ For this study diatoms, as well as fresh algae slides of diatoms, cyanobacteria and green algae were identified and enumerated. Short verse long hydroperiod soil and water column nutrients were compared. Short and long hydroperiod algal periphyton mat productivity rates were compared using BOD incubations. Experimental manipulations were performed to determine the effects of desiccation duration and rewetting on periphyton productivity, community structure, and nutrient flux. ^ Variation in periphyton community structure was significantly greater between hydroperiods than within hydroperiods. Short and long hydroperiod periphyton mats have the same algal species, it is the distribution and abundance that varies between hydroperiods. Long hydroperiod mats have greater diatom abundance while short hydroperiod mats have greater relative filamentous cyanobacterial abundance. ^ Long hydroperiod mats had greater net primary production (npp) than short hydroperiod mats. Short hydroperiod mats respond to rewetting more rapidly than do long hydroperiod mats. Dry short hydroperiod mats became net primary producers within 24 hours of rehydration. Increasing desiccation duration led to greater cyanobacterial abundance in long hydroperiod mats and decreased diatom abundance in both long and short hydroperiod mats. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Everglades National Park (ENP) is about to undergo the world's largest wetland restoration with the aim of improving the quality, timing and distribution of water flow. The changes in water flow are hypothesized to alter the nutrient fluxes and organic matter (OM) dynamics within ENP, especially in the estuarine areas. This study used a multi-proxy approach of molecular markers and stable δ 13C isotope measurements, to determine the present day OM dynamics in ENP. ^ OM dynamics in wetland soils/sediments have proved to be difficult to understand using traditional geochemical approaches. These are often inadequate to describe the multitude of OM sources (e.g. higher land plant, emergent vegetation, submerged vegetation) to the soils/sediments and the complex diagenetic processes that can alter the OM characteristics. A multi-proxy approach, however, that incorporates both molecular level and bulk parameter information is ideal to comprehend complex OM dynamics in aquatic environments. Therefore, biomass-specific molecular markers or proxies can be useful in tracing the sources and processing of OM. This approach was used to examine the OM dynamics in the two major drainage basins, Shark River Slough and Taylor River Slough, of ENP. Freshwater to marine transects were sampled in both systems for soils/sediments and suspended particulate organic matter (SPOM) to be characterized through bulk OM analyses, lipid biomarker determinations (e.g. sterols, fatty acids, hydrocarbons and triterpenoids) and compound-specific stable carbon isotope (δ 13C) determinations. ^ One key accomplishment of the research was the assessment of a molecular marker proxy (Paq) to distinguish between emergent/higher plant vegetation from submerged vegetation within ENP. This proxy proved to be quite useful at tracing OM inputs to the soils/sediments of ENP. A second key accomplishment was the development of a 3-way model using vegetation specific molecular markers. This novel, descriptive model was successfully applied to the estuarine areas of Taylor and Shark River sloughs, providing clear evidence of mixing of freshwater, estuarine and marine derived OM in these areas. In addition, diagenetic transformations of OM in these estuaries were found to be quite different between Taylor and Shark Rivers, and are likely a result of OM quality and hydrological differences. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Expansive periphyton mats are a striking characteristic of the Florida Everglades. Floating periphyton mats are home to a diverse macroinvertebrate community dominated by chironomid and ceratopogonid larvae and amphipods that use the mat as both a food resource and refuge from predation. While this periphyton complex functions as a self-organizing system, it also serves as a base for trophic interactions with larger organisms. The purpose of my research was to quantify variation in the macroinvertebrate community inhabiting floating periphyton mats, describe the role of mats in shaping food-web dynamics, and describe how these trophic interactions change with eutrophication. ^ I characterized the macroinvertebrate community inhabiting periphyton through a wet-season by describing spatial variation on scales from 0.2 m to 3 km. Floating periphyton mats contained a diverse macroinvertebrate community, with greater taxonomic richness and higher densities of many taxa than adjacent microhabitats. Macroinvertebrate density increased through the wet season as periphyton mats developed. While some variation was noted among sites, spatial patterns were not observed on smaller scales. I also sampled ten sites representing gradients of hydroperiod and nutrient (P) levels. The density of macroinvertebrates inhabiting periphyton mats increased with increasing P availability; however, short-hydroperiod P-enriched sites had the highest macroinvertebrate density. This pattern suggests a synergistic interaction of top-down and bottom-up effects. In contrast, macroinvertebrate density was lower in benthic floc, where it was negatively correlated with hydroperiod. ^ I used two types of mesocosms (field cages and tanks) to manipulate large consumers (fish and grass shrimp) with inclusion/exclusion cages over an experimental P gradient. In most cases, periphyton mats served as an effective predation refuge. Macroinvertebrates were consumed more frequently in P-enriched treatments, where mats were also heavily grazed. Macroinvertebrate densities decreased with increasing P in benthic floc, but increased with enrichment in periphyton mats until levels were reached that caused disassociation of the mat. ^ This research documents several indirect trophic interactions that can occur in complex habitats, and emphasizes the need to characterize dynamics of all microhabitats to fully describe the dynamics of an ecosystem. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gap succession is a significant determinant of structure and development in most forest communities. Lightning strikes are an important source of canopy gaps in the mangrove forest of Everglades National Park. I investigated the successional dynamics of lightning-initiated canopy gaps to determine their influence on forest stand structure of the mixed mangrove forests ( Rhizophora mangle, Laguncularia racemosa, and Avicennia germinans ) of the Shark River. I measured gap size, gap shape, light environment, soil characteristics, woody debris, and fiddler crab abundance. I additionally measured the vegetative composition in a chronosequences of gap successional stages (new, recruiting, and growing gaps). I recorded survivorship, recruitment, growth and soil elevation dynamics within a subset of new and growing gaps. I determined the relationship between intact forest soil elevation and site hydrology in order to interpret the effects of lightning disturbance on soil elevation dynamics. ^ Gap size averaged 289 ± 20 m2 (± 1SE) and light transmittance decreased exponentially as gaps filled with saplings. Fine woody debris was highest in recruiting gaps. Soil strength was lower in the gaps than in the forest. The abundance of large and medium fiddler crab burrows increased linearly with total seedling abundance. Soil surface elevation declined in newly formed lightning gaps; this loss was due to a combination of superficial erosion (8.5 mm) and subsidence (60.9 mm). A distinct two-cohort recruitment pattern was evident in the seedling/sapling surveys, suggesting a partitioning of the succession between individuals present before and after lightning strike. In new gaps, the seedling recruitment rate was twice as high as in forest and the sapling population increased. At the growing gap stage, R. mangle seedling mortality was 10 times greater and sapling mortality was 13 times greater than recruitment. Growing gaps had reduced seedling stem elongation, sapling growth and adult growth. However, a few individuals (R. mangle saplings) were able to recruit into the adult life stage. In conclusion, the high density of R. mangle seedlings and saplings imply that lightning strike disturbances in these mangrove forests favor their recruitment over that of A. germinans and L. racemosa. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the Florida Everglades, tree islands are conspicuous heterogeneous elements in a complex wetland landscape. I investigated the effects of increased freshwater flow in southern Everglades seasonally flooded tree islands, and characterized biogeochemical interactions among tree islands and the marsh landscape matrix, specifically examining hydrologic flows of nitrogen (N), and landscape N sequestration capacity. I utilized ecological trajectories of key ecosystem variables to differentiate effects of increased sheetflow and hydroperiod. I utilized stable isotope analyses and nutrient content of tree island ecosystem components to test the hypothesis that key processes in tree island nitrogen cycling would favor ecosystem N sequestration. I combined estimates of tree island ecosystem N standing stocks and fluxes, soil and litter N transformation rates, and hydrologic inputs of N to quantify the net sequestration of N by a seasonally flooded tree island. ^ Results show that increased freshwater flow to seasonally flooded tree islands promoted ecosystem oligotrophy, whereas reduced flows allowed some plant species to cycle P less efficiently. As oligotrophy is a defining parameter of Everglades wetlands, and likely promotes belowground production and peat development, reintroducing freshwater flow from an upstream canal had a favorable effect on ecosystem dynamics of tree islands in the study area. Important factors influencing the stable isotopic composition of nitrogen and carbon were: (1) a contribution to soil N by soil invertebrates, animal excrement, and microbes, (2) a possible NO3 source from an upstream canal and an "open" ecosystem N cycle, and (3) greater availability of phosphorus in tree islands relative to the marsh landscape, suggesting that tree island N cycling favors N sequestration. Hydrologic sources of N were dominated by surface water loads of NO3- and NH 4+, and an important soil N transformation promoting the net loss of surface water DIN was nitrate immobilization associated with soils and surficial leaf litter. The net inorganic N sequestration capacity of a seasonally flooded tree island was 50 g yr-1 m -2. Thus, tree islands likely have an important function in landscape sequestration of inorganic N, and may reduce significant anthropogenic N loads to downstream coastal systems. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation research project addressed the question of how hydrologic restoration of the Everglades is impacting the nutrient dynamics of marsh ecosystems in the southern Everglades. These effects were analyzed by quantifying nitrogen (N) cycle dynamics in the region. I utilized stable isotope tracer techniques to investigate nitrogen uptake and cycling between the major ecosystem components of the freshwater marsh system. I recorded the natural isotopic signatures (δ15N and δ 13C) for major ecosystem components from the three major watersheds of the Everglades: Shark River Slough, Taylor Slough, and C-111 basin. Analysis of δ15 N and δ13C natural abundance data were used to demonstrate the spatial extent to which nitrogen from anthropogenic or naturally enriched sources is entering the marshes of the Everglades. In addition, I measured the fluxes on N between various ecosystem components at both near-canal and estuarine ecotone locations. Lastly, I investigated the effect of three phosphorus load treatments (0.00 mg P m-2, 6.66 mg P m-2, and 66.6 mg P m-2) on the rate and magnitude of ecosystem N-uptake and N-cycling. The δ15N and δ13C natural abundance data supported the hypothesis that ecosystem components from near-canal sites have heavier, more enriched δ 15N isotopic signatures than downstream sites. The natural abundance data also showed that the marshes of the southern Everglades are acting as a sink for isotopically heavier, canal-borne dissolved inorganic nitrogen (DIN) and a source for "new" marsh derived dissolved organic nitrogen (DON). In addition, the 15N mesocosm data showed the rapid assimilation of the 15N tracer by the periphyton component and the delayed N uptake by soil and macrophyte components in the southern Everglades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, I determined the identity, taxonomic placement, and distribution of digenetic trematodes parasitizing the snails Pomacea paludosa and Planorbella duryi at Pa-hay-okee, Everglades National Park. I also characterized temporal and geographic variation in the probability of parasite infection for these snails based on two years of sampling. Although studies indicate that digenean parasites may have important effects both on individual species and the structure of communities, there have been no studies of digenean parasitism on snails within the Everglades ecosystem. For example, the endangered Everglade Snail Kite, a specialist that feeds almost exclusively on Pomacea paludosa, and is known to be a definitive host of digenean parasites, may suffer direct and indirect effects from consumption of parasitized apple snails. Therefore, information on the diversity and abundance of parasites harbored in snail populations in the Everglades should be of considerable interest for management and conservation of wildlife. Juvenile digeneans (cercariae) representing 20 species were isolated from these two snails, representing a quadrupling of the number of species known. Species were characterized based on morphological, morphometric, and sequence data (18S rDNA, COI, and ITS). Species richness of shed cercariae from P. duryi was greater than P. paludosa, with 13 and 7 species respectively. These species represented 14 families. P. paludosa and P. duryi had no digenean species in common. Probability of digenean infection was higher for P. duryi than P. paludosa and adults showed a greater risk of infection than juveniles for both of these snails. Planorbella duryi showed variation in probability of infection between sampling sites and hydrological seasons. The number of unique combinations of multi-species infections was greatest among P. duryi individuals, while the overall percentage of multi-species infections was greatest in P. paludosa. Analyses of six frequently-observed multiple infections from P. duryi suggest the presence of negative interactions, positive interactions, and neutral associations between larval digeneans. These results should contribute to an understanding of the factors controlling the abundance and distribution of key species in the Everglades ecosystem and may in particular help in the management and recovery planning for the Everglade Snail Kite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive investigation of sensitive ecosystems in South Florida with the main goal of determining the identity, spatial distribution, and sources of both organic biocides and trace elements in different environmental compartments is reported. This study presents the development and validation of a fractionation and isolation method of twelve polar acidic herbicides commonly applied in the vicinity of the study areas, including e.g. 2,4-D, MCPA, dichlorprop, mecroprop, picloram in surface water. Solid phase extraction (SPE) was used to isolate the analytes from abiotic matrices containing large amounts of dissolved organic material. Atmospheric-pressure ionization (API) with electrospray ionization in negative mode (ESP-) in a Quadrupole Ion Trap mass spectrometer was used to perform the characterization of the herbicides of interest. ^ The application of Laser Ablation-ICP-MS methodology in the analysis of soils and sediments is reported in this study. The analytical performance of the method was evaluated on certified standards and real soil and sediment samples. Residential soils were analyzed to evaluate feasibility of using the powerful technique as a routine and rapid method to monitor potential contaminated sites. Forty eight sediments were also collected from semi pristine areas in South Florida to conduct screening of baseline levels of bioavailable elements in support of risk evaluation. The LA-ICP-MS data were used to perform a statistical evaluation of the elemental composition as a tool for environmental forensics. ^ A LA-ICP-MS protocol was also developed and optimized for the elemental analysis of a wide range of elements in polymeric filters containing atmospheric dust. A quantitative strategy based on internal and external standards allowed for a rapid determination of airborne trace elements in filters containing both contemporary African dust and local dust emissions. These distributions were used to qualitative and quantitative assess differences of composition and to establish provenance and fluxes to protected regional ecosystems such as coral reefs and national parks. ^