972 resultados para Acoustic oscillation
Resumo:
Synoptic wind events in the equatorial Pacific strongly influence the El Niño/Southern Oscillation (ENSO) evolution. This paper characterizes the spatio-temporal distribution of Easterly (EWEs) and Westerly Wind Events (WWEs) and quantifies their relationship with intraseasonal and interannual large-scale climate variability. We unambiguously demonstrate that the Madden–Julian Oscillation (MJO) and Convectively-coupled Rossby Waves (CRW) modulate both WWEs and EWEs occurrence probability. 86 % of WWEs occur within convective MJO and/or CRW phases and 83 % of EWEs occur within the suppressed phase of MJO and/or CRW. 41 % of WWEs and 26 % of EWEs are in particular associated with the combined occurrence of a CRW/MJO, far more than what would be expected from a random distribution (3 %). Wind events embedded within MJO phases also have a stronger impact on the ocean, due to a tendency to have a larger amplitude, zonal extent and longer duration. These findings are robust irrespective of the wind events and MJO/CRW detection methods. While WWEs and EWEs behave rather symmetrically with respect to MJO/CRW activity, the impact of ENSO on wind events is asymmetrical. The WWEs occurrence probability indeed increases when the warm pool is displaced eastward during El Niño events, an increase that can partly be related to interannual modulation of the MJO/CRW activity in the western Pacific. On the other hand, the EWEs modulation by ENSO is less robust, and strongly depends on the wind event detection method. The consequences of these results for ENSO predictability are discussed.
Resumo:
The combined influences of the westerly phase of the quasi-biennial oscillation (QBO-W) and solar maximum (Smax) conditions on the Northern Hemisphere extratropical winter circulation are investigated using reanalysis data and Center for Climate System Research/National Institute for Environmental Studies chemistry climate model (CCM) simulations. The composite analysis for the reanalysis data indicates strengthened polar vortex in December followed by weakened polar vortex in February–March for QBO-W during Smax (QBO-W/Smax) conditions. This relationship need not be specific to QBO-W/Smax conditions but may just require strengthened vortex in December, which is more likely under QBO-W/Smax. Both the reanalysis data and CCM simulations suggest that dynamical processes of planetary wave propagation and meridional circulation related to QBO-W around polar vortex in December are similar in character to those related to Smax; furthermore, both processes may work in concert to maintain stronger vortex during QBO-W/Smax. In the reanalysis data, the strengthened polar vortex in December is associated with the development of north–south dipole tropospheric anomaly in the Atlantic sector similar to the North Atlantic oscillation (NAO) during December–January. The structure of the north–south dipole anomaly has zonal wavenumber 1 (WN1) component, where the longitude of anomalous ridge overlaps with that of climatological ridge in the North Atlantic in January. This implies amplification of the WN1 wave and results in the enhancement of the upward WN1 propagation from troposphere into stratosphere in January, leading to the weakened polar vortex in February–March. Although WN2 waves do not play a direct role in forcing the stratospheric vortex evolution, their tropospheric response to QBO-W/Smax conditions appears to be related to the maintenance of the NAO-like anomaly in the high-latitude troposphere in January. These results may provide a possible explanation for the mechanisms underlying the seasonal evolution of wintertime polar vortex anomalies during QBO-W/Smax conditions and the role of troposphere in this evolution.
Resumo:
The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in the Trop- ics. It can be characterised as a planetary-scale coupling between the atmospheric circulation and organised deep convection that propagates east through the equatorial Indo-Pacific region. The MJO interacts with weather and climate systems on a near-global scale and is a crucial source of predictability for weather forecasts on medium to seasonal timescales. Despite its global signifi- cance, accurately representing the MJO in numerical weather prediction (NWP) and climate models remains a challenge. This thesis focuses on the representation of the MJO in the Integrated Forecasting System (IFS) at the European Centre for Medium-Range Weather Forecasting (ECMWF), a state-of-the-art NWP model. Recent modifications to the model physics in Cycle 32r3 (Cy32r3) of the IFS led to ad- vances in the simulation of the MJO; for the first time the observed amplitude of the MJO was maintained throughout the integration period. A set of hindcast experiments, which differ only in their formulation of convection, have been performed between May 2008 and April 2009 to asses the sensitivity of MJO simulation in the IFS to the Cy32r3 convective parameterization. Unique to this thesis is the attribution of the advances in MJO simulation in Cy32r3 to the mod- ified convective parameterization, specifically, the relative-humidity-dependent formulation for or- ganised deep entrainment. Increasing the sensitivity of the deep convection scheme to environmen- tal moisture is shown to modify the relationship between precipitation and moisture in the model. Through dry-air entrainment, convective plumes ascending in low-humidity environments terminate lower in the atmosphere. As a result, there is an increase in the occurrence of cumulus congestus, which acts to moisten the mid-troposphere. Due to the modified precipitation-moisture relationship more moisture is able to build up which effectively preconditions the tropical atmosphere for the transition to deep convection. Results from this thesis suggest that a tropospheric moisture control on convection is key to simulating the interaction between the physics and large-scale circulation associated with the MJO.
Resumo:
The variation of wind-optimal transatlantic flight routes and their turbulence potential is investigated to understand how upper-level winds and large-scale flow patterns can affect the efficiency and safety of long-haul flights. In this study, the wind-optimal routes (WORs) that minimize the total flight time by considering wind variations are modeled for flights between John F. Kennedy International Airport (JFK) in New York, New York, and Heathrow Airport (LHR) in London, United Kingdom, during two distinct winter periods of abnormally high and low phases of North Atlantic Oscillation (NAO) teleconnection patterns. Eastbound WORs approximate the JFK–LHR great circle (GC) route following northerly shifted jets in the +NAO period. Those WORs deviate southward following southerly shifted jets during the −NAO period, because eastbound WORs fly closely to the prevailing westerly jets to maximize tailwinds. Westbound WORs, however, spread meridionally to avoid the jets near the GC in the +NAO period to minimize headwinds. In the −NAO period, westbound WORs are north of the GC because of the southerly shifted jets. Consequently, eastbound WORs are faster but have higher probabilities of encountering clear-air turbulence than westbound ones, because eastbound WORs are close to the jet streams, especially near the cyclonic shear side of the jets in the northern (southern) part of the GC in the +NAO (−NAO) period. This study suggests how predicted teleconnection weather patterns can be used for long-haul strategic flight planning, ultimately contributing to minimizing aviation’s impact on the environment
Resumo:
This paper demonstrates by means of joint time-frequency analysis that the acoustic noise produced by the breaking of biscuits is dependent on relative humidity and water activity. It also shows that the time-frequency coefficients calculated using the adaptive Gabor transformation algorithm is dependent on the period of time a biscuit is exposed to humidity. This is a new methodology that can be used to assess the crispness of crisp foods. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The Madden-Julian oscillation (MJO) is the most prominent form of tropical intraseasonal variability. This study investigated the following questions. Do inter-annual-to-decadal variations in tropical sea surface temperature (SST) lead to substantial changes in MJO activity? Was there a change in the MJO in the 1970s? Can this change be associated to SST anomalies? What was the level of MJO activity in the pre-reanalysis era? These questions were investigated with a stochastic model of the MJO. Reanalysis data (1948-2008) were used to develop a nine-state first order Markov model capable to simulate the non-stationarity of the MJO. The model is driven by observed SST anomalies and a large ensemble of simulations was performed to infer the activity of the MJO in the instrumental period (1880-2008). The model is capable to reproduce the activity of the MJO during the reanalysis period. The simulations indicate that the MJO exhibited a regime of near normal activity in 1948-1972 (3.4 events year(-1)) and two regimes of high activity in 1973-1989 (3.9 events) and 1990-2008 (4.6 events). Stochastic simulations indicate decadal shifts with near normal levels in 1880-1895 (3.4 events), low activity in 1896 1917 (2.6 events) and a return to near normal levels during 1918-1947 (3.3 events). The results also point out to significant decadal changes in probabilities of very active years (5 or more MJO events): 0.214 (1880-1895), 0.076 (1896-1917), 0.197 (1918-1947) and 0.193 (1948-1972). After a change in behavior in the 1970s, this probability has increased to 0.329 (1973-1989) and 0.510 (1990-2008). The observational and stochastic simulations presented here call attention to the need to further understand the variability of the MJO on a wide range of time scales.
Resumo:
The yeasts of the Malassezia genus are opportunistic microorganisms and can cause human and animal infections. They are commonly isolated from the skin and auricular canal of mammalians, mainly dogs and cats. The present study was aimed to isolate Malassezia spp. from the acoustic meatus of bats (Molossus molossus) in the Montenegro region, `` Rondonia ``, Brazil. From a total of 30 bats studied Malassezia spp. were isolated in 24 (80%) animals, the breakdown by species being as follows (one Malassezia sp. per bat, N=24): 15 (62.5%) M. pachydermatis, 5 (20.8%) M. furfur, 3 (12.5%) M. globosa and 1 (4.2%) M. sympodialis. This study establishes a new host and anatomic place for Malassezia spp., as it presents the first report ever of the isolation of this genus of yeasts in the acoustic meatus of bats.
Resumo:
We consider a certain type of second-order neutral delay differential systems and we establish two results concerning the oscillation of solutions after the system undergoes controlled abrupt perturbations (called impulses). As a matter of fact, some particular non-impulsive cases of the system are oscillatory already. Thus, we are interested in finding adequate impulse controls under which our system remains oscillatory. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Condition monitoring of wooden railway sleepers applications are generallycarried out by visual inspection and if necessary some impact acoustic examination iscarried out intuitively by skilled personnel. In this work, a pattern recognition solutionhas been proposed to automate the process for the achievement of robust results. Thestudy presents a comparison of several pattern recognition techniques together withvarious nonstationary feature extraction techniques for classification of impactacoustic emissions. Pattern classifiers such as multilayer perceptron, learning cectorquantization and gaussian mixture models, are combined with nonstationary featureextraction techniques such as Short Time Fourier Transform, Continuous WaveletTransform, Discrete Wavelet Transform and Wigner-Ville Distribution. Due to thepresence of several different feature extraction and classification technqies, datafusion has been investigated. Data fusion in the current case has mainly beeninvestigated on two levels, feature level and classifier level respectively. Fusion at thefeature level demonstrated best results with an overall accuracy of 82% whencompared to the human operator.
Resumo:
The world is urbanizing rapidly with more than half of the global population now living in cities. Improving urban environments for the well-being of the increasing number of urban citizens is becoming one of the most important challenges of the 21st century. Even though it is common that city planners have visions of a ’good urban milieu’, those visions are concerning visual aesthetics or practical matters. The qualitative perspective of sound, such as sonic diversity and acoustic ecology are neglected aspects in architectural design. Urban planners and politicians are therefore largely unaware of the importance of sounds for the intrinsic quality of a place. Whenever environmental acoustics is on the agenda, the topic is noise abatement or noise legislation – a quantitative attenuation of sounds. Some architects may involve acoustical aspects in their work but sound design or acoustic design has yet to develop to a distinct discipline and be incorporated in urban planning.My aim was to investigate to what extent the urban soundscape is likely to improve if modern architectural techniques merge with principles of acoustics. This is an important, yet unexplored, research area. My study explores and analyses the acoustical aspects in urban development and includes interviews with practitioners in the field of urban acoustics, situated in New York City. My conclusion is that to achieve a better understanding of the human living conditions in mega-cities, there is a need to include sonic components into the holistic sense of urban development.
Resumo:
The features of non-native speech which distinguish it from native speech are often difficult to pin down. It is possible to be a native speaker of any of a vast number of varieties of English. These varieties each have their phonetic characteristics which allow them to be identified by speakers of the varieties in question and by others. The phonetic differences between the accents represented by these varieties are very great. It is impossible to indicate any particular configuration of vowels in the acoustic vowel space or set of consonant articulations which all native-speaker varieties of English have in common and which non-native speakers do not share. This study considers the vowel quality in a single word by native and non-native speakers.
Resumo:
This work aims to investigate the efficiency of digital signal processing tools of acoustic emission signals in order to detect thermal damages in grinding process. To accomplish such a goal, an experimental work was carried out for 15 runs in a surface grinding machine operating with an aluminum oxide grinding wheel and ABNT 1045. The acoustic emission signals were acquired from a fixed sensor placed on the workpiece holder. A high sampling rate data acquisition system at 2.5 MHz was used to collect the raw acoustic emission instead of root mean square value usually employed. Many statistics have shown effective to detect burn, such as the root mean square (RMS), correlation of the AE, constant false alarm (CFAR), ratio of power (ROP) and mean-value deviance (MVD). However, the CFAR, ROP, Kurtosis and correlation of the AE have been presented more sensitive than the RMS.
Resumo:
Radial profiles are reported of average and rms temperature in a propane flame for the first, second, and third acoustic modes at four different axial positions above the burner in a Rijke-tube combustor. Selected plots of the power spectral density (PSD) of temperature fluctuations are also reported. These radial profiles are then compared to similar ones made in the same flame, but in the absence of the acoustic field. Visual observations and photographs of the flame showed a remarkable change in flame height and structure with the onset of acoustic oscillations. This reduction in flame length, caused by the enhanced mixing due to the acoustic velocity fluctuations, gave rise to higher and lower average and rms temperatures near or well above the burner, respectively. In general, the PSD plots had a broad frequency content. The general trend was a decrease in magnitude with an increase in frequency. All cases presented broad-band peaks at around 5 Hz related to the flame flickering phenomenon. Preferred frequencies were observed in the oscillating PSD plots related to the fundamental frequency as well as subharmonics in the tube. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The effects of combustion driven acoustic oscillations in carbon monoxide and nitrogen oxides emission rates of a combustor operated with liquefied petroleum gas (LPG) were investigated. Because the fuel does not contain nitrogen, tests were also conducted with ammonia injected in the fuel, in order to study the formation of fuel NOx. The main conclusions were: (a) the pulsating combustion process is more efficient than the non-pulsating one and (b) the pulsating combustion process generates higher rates of NOx, with and without ammonia injection, as shown by CO and NO concentrations as function of the O-2 concentration. An increase in the LPG flow rate, keeping constant the air to fuel ratio, increased the acoustic pressure amplitude and the frequency of oscillation. The injection of ammonia had no influence on either pressure amplitude or frequency. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The Amapá State has an important natural lake system, known as The Amapá Lakes Region . Most of these lakes are on the southern part of Amapá s coastal plain, which has 300 km of extension and it s composed by holocenic sediments deposited at the northern part of Amazon River to the Orange Cape located on the northern part of Amapá state. This region is under influence of the Amazon River discharge which is the largest liquid discharge of about 209.000 m³/s and biggest sediment budget discharged on the ocean in the order 6.108 ton per day. The climate is influenced by the Intertropical Convergence Zone and El Niño Southern Oscillation which act mainly under precipitation, nebulosity, local rivers and tidal hidrology. In this region lake belts are Ocidental, Oriental and Meridional Lake Belts. The last one is formed by the by the lakes Comprido de Cima, Botos, Bacia, Lodão, Ventos, Mutuco and Comprido de Baixo. These lakes are the closest to the Araguari River and are characterized by pelitic sedimentation associated with fluvial and estuarine flood plains under influence of tides. The lakes are interconnected, suffer influence of flood pulses from the Tartarugal, Tartarugalzinho and Araguari rivers and the hydrodynamic and morphodynamic know edge is poor. Volume and area reduction, natural eutrophication, anthophic influence, hidrodynamic alterations, morphological changes and are factors which can contribute to the closing of such lakes on the Meridional Lake Belt. This belt is inside the boundaries of the Biological Reserve of Piratuba Lake, created in 1980 for integral protection. Due to the fragility of the environment together with the poor knowledge of the system and with the study area relevancy it is necessary to know the hydrodynamic and geoenvironmental processes. This work aims the characterization of morphodynamic and hydrodynamic processes in order to understand the geoambiental context of the Meridional Lake Belt, from the Comprido de Baixo Lake to the dos Ventos Lake, including the Tabaco Igarape. Methodology was based on the hydrodynamic data acquisition: liquid discharge (acoustic method), tides, bathymetry and the interpretation of multitemporal remote sensing images, integrated in a Geographic Information System (GIS). By this method charts of the medium liquid discharges of Lake Mutuco and Tabacco Igarape the maximum velocity of flow were estimated in: 1.1 m/s, 1.6 m/s and 1.6 m/s (rainy season) and 0.6 m/s, 0.6 m/s and 0.7 m/s (dry period), the maximum flow in: 289 m³/s, 297 m³/s and 379 m³/s (rainy season) and 41 m³/s , 79 m³/s and 105 m³/s (dry period), respectively. From the interpretation of multitemporal satellite images, maps were developed together with the analysis of the lakes and Tobaco Igarape evolution from 1972 to 2008, and were classified according to the degree of balance in the area: stable areas, eutrophic areas, areas of gain, and eroded areas. Troughout analysis of the balance of areas, it was possible to quantify the volume of lake areas occupied by aquatic macrophytes. The study sought to understand the hydrodynamic and morphodynamic processes occurring in the region, contributing to the elucidation of the processes which cause and/or favor geoenvironmental changes in the region; all such information is fundamental to making the management of the area and further definition of parameters for environmental monitoring and contributing to the development of the management plan of the Biological Reserve of Lake Piratuba. The work activities is a part of the Project "Integration of Geological, geophysical and geochemical data to Paleogeographic rebuilding of Amazon Coast, from the Neogene to the Recent