951 resultados para Acesso Aberto
Resumo:
In the Hydrocarbon exploration activities, the great enigma is the location of the deposits. Great efforts are undertaken in an attempt to better identify them, locate them and at the same time, enhance cost-effectiveness relationship of extraction of oil. Seismic methods are the most widely used because they are indirect, i.e., probing the subsurface layers without invading them. Seismogram is the representation of the Earth s interior and its structures through a conveniently disposed arrangement of the data obtained by seismic reflection. A major problem in this representation is the intensity and variety of present noise in the seismogram, as the surface bearing noise that contaminates the relevant signals, and may mask the desired information, brought by waves scattered in deeper regions of the geological layers. It was developed a tool to suppress these noises based on wavelet transform 1D and 2D. The Java language program makes the separation of seismic images considering the directions (horizontal, vertical, mixed or local) and bands of wavelengths that form these images, using the Daubechies Wavelets, Auto-resolution and Tensor Product of wavelet bases. Besides, it was developed the option in a single image, using the tensor product of two-dimensional wavelets or one-wavelet tensor product by identities. In the latter case, we have the wavelet decomposition in a two dimensional signal in a single direction. This decomposition has allowed to lengthen a certain direction the two-dimensional Wavelets, correcting the effects of scales by applying Auto-resolutions. In other words, it has been improved the treatment of a seismic image using 1D wavelet and 2D wavelet at different stages of Auto-resolution. It was also implemented improvements in the display of images associated with breakdowns in each Auto-resolution, facilitating the choices of images with the signals of interest for image reconstruction without noise. The program was tested with real data and the results were good
Resumo:
In the operational context of industrial processes, alarm, by definition, is a warning to the operator that an action with limited time to run is required, while the event is a change of state information, which does not require action by the operator, therefore should not be advertised, and only stored for analysis of maintenance, incidents and used for signaling / monitoring (EEMUA, 2007). However, alarms and events are often confused and improperly configured similarly by developers of automation systems. This practice results in a high amount of pseudo-alarms during the operation of industrial processes. The high number of alarms is a major obstacle to improving operational efficiency, making it difficult to identify problems and increasing the time to respond to abnormalities. The main consequences of this scenario are the increased risk to personal safety, facilities, environment deterioration and loss of production. The aim of this paper is to present a philosophy for setting up a system of supervision and control, developed with the aim of reducing the amount of pseudo-alarms and increase reliability of the information that the system provides. A real case study was conducted in the automation system of the offshore production of hydrocarbons from Petrobras in Rio Grande do Norte, in order to validate the application of this new methodology. The work followed the premises of the tool presented in ISA SP18.2. 2009, called "life cycle alarm . After the implementation of methodology there was a significant reduction in the number of alarms
Resumo:
This work presents the results of a survey in oil-producing region of the Macau City, northern coast of Rio Grande do Norte. All work was performed under the Project for Monitoring Environmental Change and the Influence of Hydrodynamic forcing on Morphology Beach Grass Fields, Serra Potiguar in Macau, with the support of the Laboratory of Geoprocessing, linked to PRH22 - Training Program in Geology Geophysics and Information Technology Oil and Gas - Department of Geology/CCET/UFRN and the Post-Graduation in Science and Engineering Oil/PPGCEP/UFRN. Within the economic-ecological context, this paper assesses the importance of mangrove ecosystem in the region of Macau and its surroundings as well as in the following investigative exploration of potential areas for projects involving reforestation and / or Environmental Restoration. At first it was confirmed the ecological potential of mangrove forests, with primary functions: (i) protection and stabilization of the shoreline, (ii) nursery of marine life, and (iii) source of organic matter to aquatic ecosystems, (iv) refuge of species, among others. In the second phase, using Landsat imagery and techniques of Digital Image Processing (DIP), I came across about 18,000 acres of land that can be worked on environmental projects, being inserted in the rules signed the Kyoto Protocol to the market carbon. The results also revealed a total area of 14,723.75 hectares of activity of shrimp production and salting that can be harnessed for the social, economic and environmental potential of the region, considering that over 60% of this area, ie, 8,800 acres, may be used in the planting of the genus Avicennia considered by the literature that the species best sequesters atmospheric carbon, reaching a mean value of 59.79 tons / ha of mangrove
Resumo:
The oil companies in the area in general are looking for new technologies that can increase the recovery factor of oil contained in reservoirs. These investments are mainly aimed at reducing the costs of projects which are high. Steam injection is one of these special methods of recovery in which steam is injected into the reservoir in order to reduce the viscosity of the oil and make it more mobile. The process assisted gravity drainage steam (SAGD) using steam injection in its mechanism, as well as two parallel horizontal wells. In this process steam is injected through the horizontal injection well, then a vapor chamber is formed by heating the oil in the reservoir and, by the action of gravitational forces, this oil is drained down to where the production well. This study aims to analyze the influence of pressure drop and heat along the injection well in the SAGD process. Numerical simulations were performed using the thermal simulator STARS of CMG (Computer Modeling Group). The parameters studied were the thermal conductivity of the formation, the flow of steam injection, the inner diameter of the column, the steam quality and temperature. A factorial design was used to verify the influence of the parameters studied in the recovery factor. We also analyzed different injection flow rates for the model with pressure drop and no pressure drop, as well as different maximum flow rates of oil production. Finally, we performed an economic analysis of the two models in order to check the profitability of the projects studied. The results showed that the pressure drop in injection well have a significant influence on the SAGD process.
Resumo:
When it comes to oil and gas in Brazil is almost certain that we are referring to activities in deep waters off the coast of Campos, Rio de Janeiro, the main field of action of PETROBRAS and a small number of multinational oil companies . Since the Law 9.478/97 allows, by means of concessions, that other companies other than Petrobras, to explore and produce oil and gas domestically. Soon it moved, then the private companies that want small and medium-sized businesses to invest in such activities, forming a segment of independent producers, as occurs in other countries. In this context, this work aims at making an economic feasibility study, is currently analyzing how this thread and focus on the factors that contribute to its development as well as those that constitute barriers. To this end, we conducted a survey examining some mature fields that are in production in order to capture cost information in the phases of project, operation and abandonment. The work also presents an analysis of the results obtained in the survey, identifying the costs higher. With the results obtained through the study used economic engineering tools such as NPV and IRR, using a variety of design scenarios, to study the economic viability of these fields. In scenario 4 was set a production of 4.0 m³ / d of oil, which is an expected average production for several of these fields, whose minimum value of a barrel of oil, to enable this field, was $ 55.00, this value well below what was being practiced in the market today.
Resumo:
Biodiesel is an alternative fuel, renewable, biodegradable and nontoxic. The transesterification of vegetable oils or animal fat with alcohol is most common form of production of this fuel. The procedure for production of biodiesel occurs most commonly through the transesterification reaction in which catalysts are used to accelerate and increase their income and may be basic, acid or enzyme. The use of homogeneous catalysis requires specific conditions and purification steps of the reaction products (alkyl ester and glycerol) and removal of the catalyst at the end of the reaction. As an alternative to improve the yield of the transesterification reaction, minimize the cost of production is that many studies are being conducted with the application of heterogeneous catalysis. The use of nano-structured materials as catalysts in the production of biodiesel is a biofuel alternative for a similar to mineral diesel. Although slower, can esterify transesterified triglycerides and free fatty acids and suffer little influence of water, which may be present in the raw material. This study aimed at the synthesis, characterization and application of nano-structured materials as catalysts in the transesterification reaction of soybean oil to produce biodiesel by ethylic route. The type material containing SBA-15 mesoporous lanthanum embedded within rightly Si / La = 50 was used catalyst. Solid samples were characterized by X-ray diffraction, thermogravimetric analysis, infrared spectroscopy, nitrogen adsorption and desorption. For the transesterification process, we used a molar ratio of 20:1 alcohol and oil with 0.250 g of catalyst at 60°C and times of 6 hours of reaction. It was determined the content of ethyl esters by H-NMR analysis and gas chromatography. It was found that the variable of conversion obtained was 80%, showing a good catalytic activity LaSBA-15 in the transesterification of vegetable oils via ethylic route
Resumo:
Stimulation operations have with main objective restore or improve the productivity or injectivity rate in wells. Acidizing is one of the most important operations of well stimulation, consist in inject acid solutions in the formation under fracture formation pressure. Acidizing have like main purpose remove near wellbore damage, caused by drilling or workover operations, can be use in sandstones and in carbonate formations. A critical step in acidizing operation is the control of acid-formation reaction. The high kinetic rate of this reaction, promotes the consumed of the acid in region near well, causing that the acid treatment not achive the desired distance. In this way, the damage zone can not be bypassed. The main objective of this work was obtain stable systems resistant to the different conditions found in field application, evaluate the kinetic of calcite dissolution in microemulsion systems and simulate the injection of this systems by performing experiments in plugs. The systems were obtained from two non ionic surfactants, Unitol L90 and Renex 110, with sec-butanol and n-butanol like cosurfactants. The oily component of the microemlsion was xilene and kerosene. The acqueous component was a solution of HCl 15-26,1%. The results shown that the microemulsion systems obtained were stable to temperature until 100ºC, high calcium concentrations, salinity until 35000 ppm and HCl concentrations until 25%. The time for calcite dissolution in microemulsion media was 14 times slower than in aqueous HCl 15%. The simulation in plugs showed that microemulsion systems promote a distributed flux and promoted longer channels. The permeability enhancement was between 177 - 890%. The results showed that the microemulsion systems obtained have potential to be applied in matrix acidizing
Resumo:
Boron is a semi-metal present in certain types of soils and natural waters. It is essential to the healthy development of plants and non-toxic to humans, depending on its concentration. It is used in various industries and it s present in water production coming from oil production. More specifically in Rio Grande do Norte, one of the largest oil producers on shore of Brazil, the relationship water/oil in some fields becomes more than 90%. The most common destination of this produced water is disposal in open sea after processing to meet the legal specification. In this context, this research proposes to study the extraction of boron in water produced by microemulsion systems for industrial utilization. It was taken into account the efficiency of extraction of boron related to surfactant (DDA and OCS, both characterized by FT-IR), cosurfactant (butanol and isoamyl alcohol), organic phase (kerosene and heptanes) and aqueous phase (solution of boron 3.6 ppm in alkaline pH). The ratio cosurfactant/ surfactant used was four and the percentage of organic phases for all points of study was set at 5%. It was chosen points with the highest percentage of aqueous phase. Each system was designed for three points of different compositions in relation to the constituents of a pseudoternary diagram. These points were chosen according to studies of phase behavior in pseudoternary diagrams made in previous studies. For this research, points were chosen in the Winsor II region. The excess aqueous solution obtained in these systems was separated and analyzed by ICP OES. For the data set obtained, the better efficiency in the extraction of boron was obtained using the system with DAC, isoamyl alcohol and heptanes, which extracted 49% in a single step. OCS was not viable to the extraction of boron by microemulsion system in the conditions defined in this study
Resumo:
This master thesis aims at developing a new methodology for thermochemical degradation of dry coconut fiber (dp = 0.25mm) using laboratory rotating cylinder reactor with the goal of producing bio-oil. The biomass was characterized by infrared spectroscopy with Fourier transform FTIR, thermogravimetric analysis TG, with evaluation of activation energy the in non-isothermal regime with heating rates of 5 and 10 °C/min, differential themogravimetric analysis DTG, sweeping electron microscopy SEM, higher heating value - HHV, immediate analysis such as evaluated all the amounts of its main constituents, i.e., lignin, cellulose and hemicelluloses. In the process, it was evaluated: reaction temperature (450, 500 and 550oC), carrier gas flow rate (50 and 100 cm³/min) and spin speed (20 and 25 Hz) to condensate the bio-oil. The feed rate of biomass (540 g/h), the rotation of the rotating cylinder (33.7 rpm) and reaction time (30 33 min) were constant. The phases obtained from the process of pyrolysis of dry coconut fiber were bio-oil, char and the gas phase non-condensed. A macroscopic mass balance was applied based on the weight of each phase to evaluate their yield. The highest yield of 20% was obtained from the following conditions: temperature of 500oC, inert gas flow of 100 cm³/min and spin speed of 20 Hz. In that condition, the yield in char was 24.3%, non-condensable gas phase was 37.6% and losses of approximately 22.6%. The following physicochemical properties: density, viscosity, pH, higher heating value, char content, FTIR and CHN analysis were evaluated. The sample obtained in the best operational condition was subjected to a qualitative chromatographic analysis aiming to know the constituents of the produced bio-oil, which were: phenol followed by sirigol, acetovanilona and vinyl guaiacol. The solid phase (char) was characterized through an immediate analysis (evaluation of moisture, volatiles, ashes and fixed carbon), higher heating value and FTIR. The non-condensing gas phase presented as main constituents CO2, CO and H2. The results were compared to the ones mentioned by the literature.
Resumo:
The several existing methods for oil artificial lifting and the variety of automation equipment for these methods many times lead the supervisory systems to be dedicated to a unique method and/or to a unique manufacturer. To avoid this problem, it has been developed the supervisory system named SISAL, conceived to supervise wells with different lifting methods and different automation equipments. The SISAL system is working in several Brazilian states but, nowadays, it is only supervising rod pump-based wells. The objective of this work is the development of a supervision module to the plunger lift artificial lift method. The module will have the same characteristics of working with automation hardware of many manufacturers. The module will be integrated to the SISAL system, incorporating the capacity to supervise the plunger lift artificial lift method.
Resumo:
From their early days, Electrical Submergible Pumping (ESP) units have excelled in lifting much greater liquid rates than most of the other types of artificial lift and developed by good performance in wells with high BSW, in onshore and offshore environments. For all artificial lift system, the lifetime and frequency of interventions are of paramount importance, given the high costs of rigs and equipment, plus the losses coming from a halt in production. In search of a better life of the system comes the need to work with the same efficiency and security within the limits of their equipment, this implies the need for periodic adjustments, monitoring and control. How is increasing the prospect of minimizing direct human actions, these adjustments should be made increasingly via automation. The automated system not only provides a longer life, but also greater control over the production of the well. The controller is the brain of most automation systems, it is inserted the logic and strategies in the work process in order to get you to work efficiently. So great is the importance of controlling for any automation system is expected that, with better understanding of ESP system and the development of research, many controllers will be proposed for this method of artificial lift. Once a controller is proposed, it must be tested and validated before they take it as efficient and functional. The use of a producing well or a test well could favor the completion of testing, but with the serious risk that flaws in the design of the controller were to cause damage to oil well equipment, many of them expensive. Given this reality, the main objective of the present work is to present an environment for evaluation of fuzzy controllers for wells equipped with ESP system, using a computer simulator representing a virtual oil well, a software design fuzzy controllers and a PLC. The use of the proposed environment will enable a reduction in time required for testing and adjustments to the controller and evaluated a rapid diagnosis of their efficiency and effectiveness. The control algorithms are implemented in both high-level language, through the controller design software, such as specific language for programming PLCs, Ladder Diagram language.
Resumo:
Currently the uncertain system has attracted much academic community from the standpoint of scientific research and also practical applications. A series of mathematical approaches emerge in order to troubleshoot the uncertainties of real physical systems. In this context, the work presented here focuses on the application of control theory in a nonlinear dynamical system with parametric variations in order and robustness. We used as the practical application of this work, a system of tanks Quanser associates, in a configuration, whose mathematical model is represented by a second order system with input and output (SISO). The control system is performed by PID controllers, designed by various techniques, aiming to achieve robust performance and stability when subjected to parameter variations. Other controllers are designed with the intention of comparing the performance and robust stability of such systems. The results are obtained and compared from simulations in Matlab-simulink.
Resumo:
Among the different types of pollutants typically attributed to human activities, the petroleum products are one of the most important because of its toxic potential. This toxicity is attributed to the presence of substances such as benzene and its derivatives are very toxic to the central nervous system of man, with chronic toxicity, even in small concentrations. The area chosen for study was the city of Natal, capital of Rio Grande do Norte, where samples were collected in six different areas in the city, comprising 10 wells located in the urban area, being carried out in three distinct periods March/2009, December / June/2010 and 2009, and were evaluated for contamination by volatile hydrocarbons (BTEX - benzene, toluene, ethylbenzene and xylenes), so this work aimed to assess the quality of groundwater wells that supply funding for public supply and trade in the urban area of the city of Natal, in Rio Grande do Norte, contributing to the environmental assessment of the municipality. The analysis of BTEX in water was performed according to EPA Method 8021b. Was used the technique of headspace (TriPlus TP100) coupled to high resolution gas chromatography with selective photoionization detector (PID) and flame ionization (FID) - model Trace GC Ultra, Thermo Electron Corporation brand. The procedure adopted allowed the detection of concentrations of the order of μg.L-1. Data analysis with respect to BTEX in groundwater in the area monitored so far, shows that water quality is still preserved, because it exceeds the limits imposed by the potability Resolution CONAMA Nº. 396, April 2008
Resumo:
The world has many types of oil that have a range of values of density and viscosity, these are characteristics to identify whether an oil is light, heavy or even ultraheavy. The occurrence of heavy oil has increased significantly and pointing to a need for greater investment in the exploitation of deposits and therefore new methods to recover that oil. There are economic forecasts that by 2025, the heavy oil will be the main source of fossil energy in the world. One such method is the use of solvent vaporized VAPEX which is known as a recovery method which consists of two horizontal wells parallel to each other, with a gun and another producer, which uses as an injection solvent that is vaporized in order to reduce the viscosity of oil or bitumen, facilitating the flow to the producing well. This method was proposed by Dr. Roger Butler, in 1991. The importance of this study is to analyze how the influence some operational reservoir and parameters are important in the process VAPEX, such as accumulation of oil produced in the recovery factor in flow injection and production rate. Parameters such as flow injection, spacing between wells, type of solvent to be injected, vertical permeability and oil viscosity were addressed in this study. The results showed that the oil viscosity is the parameter that showed statistically significant influence, then the choice of Heptane solvent to be injected showed a greater recovery of oil compared to other solvents chosen, considering the spacing between the wells was shown that for a greater distance between the wells to produce more oil
Resumo:
Oil spills in marine environments represent immediate environmental impacts of large magnitude. For that reason the Environmental Sensitivity to Oil Maps constitute a major instrument for planning actions of containment and cleanup. For both the Environmental Sensitivity Maps always need to be updated, to have an appropriate scale and to represent accurately the coastal areas. In this context, this thesis presents a methodology for collecting and processing remote sensing data for the purpose of updating the territorial basis of thematic maps of Environmental Sensitivity to Oil. To ensure greater applicability of the methodology, sensors with complementary characteristics, which provide their data at a low financial cost, were selected and tested. To test the methodology, an area located on the northern coast of the Northeast of Brazil was chosen. The results showed that the products of ASTER data and image hybrid sensor PALSAR + CCD and HRC + CCD, have a great potential to be used as a source of cartographic information on projects that seek to update the Environmental Sensitivity Maps of Oil