943 resultados para Absorption of water
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-9/29-7
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-9/26-3
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-9/13-7
Resumo:
Fog deposition, precipitation, throughfall and stemflow were measured in a windward tropical montane cloud forest near Monteverde, Costa Rica, for a 65-day period during the dry season of 2003. Net fog deposition was measured directly using the eddy covariance (EC) method and it amounted to 1.2 ± 0.1 mm/day (mean ± standard error). Fog water deposition was 5-9% of incident rainfall for the entire period, which is at the low end of previously reported values. Stable isotope concentrations (d18O and d2H) were determined in a large number of samples of each water component. Mass balance-based estimates of fog deposition were 1.0 ± 0.3 and 5.0 ± 2.7 mm/day (mean ± SE) when d18O and d2H were used as tracer, respectively. Comparisons between direct fog deposition measurements and the results of the mass balance model using d18O as a tracer indicated that the latter might be a good tool to estimate fog deposition in the absence of direct measurement under many (but not all) conditions. At 506 mm, measured water inputs over the 65 days (fog plus rain) fell short by 46 mm compared to the canopy output of 552 mm (throughfall, stemflow and interception evaporation). This discrepancy is attributed to the underestimation of rainfall during conditions of high wind.
Resumo:
Eight DSDP/ODP cores were analyzed for major ion concentrations and d37Cl values of water-soluble chloride (d37Clwsc) and structurally bound chloride (d37Clsbc) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition. The average total Cl content of all 86 samples is 0.26±0.16 wt.% (0.19±0.10 wt.% as water-soluble Cl (Xwsc) and 0.09±0.09 wt.% as structurally bound Cl (Xsbc)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl**- site and the water-soluble Cl**- site varies from -1.08? to +1.16?, averaging to +0.21?. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk d37Cl values (+0.05? to +0.36?); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk d37Cl values (-1.26? and -0.54?). The cores with negative d37Cl values also have variable Cl**-/SO4**2- ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ~1? with depth for both the water-soluble and structurally bound Cl fractions. Non-zero bulk d37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive d37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low d37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative d37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.
Resumo:
Characteristics of the spatial structure of vertical synoptic currents were calculated from data of the density field surveys in order to estimate their influence on distribution of chlorophyll a concentration. Comparisons of chlorophyll concentration and vertical currents were implemented for two multidisciplinary surveys in the Black Sea carried out in summer, 1991 and in winter, 1994. The results showed qualitative and quantitative indications of coincidence of characteristics cited and, in particular, significant positive values of the correlation coefficient (0.65 for the summer survey and 0.83 for the winter one).
Resumo:
A study of the C37 alkenone compositions in suspended particulate matter in the northwestern Mediterranean Sea has shown a correspondence between Uk'37 and sea surface temperature that significantly deviates from the general equation regularly observed in most marine world areas (Müller et al., 1998, doi:10.1016/S0016-7037(98)00097-0). However, the temperatures measured in the core top sediments using the general equation are in agreement with the annual average water column temperatures between 0-40 m depth. These discrepancies suggest that despite the rather constant correlation between UK'37 and seawater temperature throughout the world oceans, specific calibrations should be developed for each new area of application of the C37 alkenones for paleotemperature determination.
Biogenic silica production rates and dissolution rates of water bottle sample at station KIWI-6/12-6