996 resultados para Absorption Measurements
Resumo:
Atmospheric downwelling longwave radiation is an important component of the terrestrial energy budget; since it is strongly related with the greenhouse effect, it remarkably affects the climate. In this study, I evaluate the estimation of the downwelling longwave irradiance at the terrestrial surface for cloudless and overcast conditions using a one-dimensional radiative transfer model (RTM), specifically the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART). The calculations performed by using this model were compared with pyrgeometer measurements at three different European places: Girona (NE of the Iberian Peninsula), Payerne (in the East of Switzerland), and Heselbach (in the Black Forest, Germany). Several studies of sensitivity based on the radiative transfer model have shown that special attention on the input of temperature and water content profiles must be held for cloudless sky conditions; for overcast conditions, similar sensitivity studies have shown that, besides the atmospheric profiles, the cloud base height is very relevant, at least for optically thick clouds. Also, the estimation of DLR in places where radiosoundings are not available is explored, either by using the atmospheric profiles spatially interpolated from the gridded analysis data provided by European Centre of Medium-Range Weather Forecast (ECMWF), or by applying a real radiosounding of a nearby site. Calculations have been compared with measurements at all sites. During cloudless sky conditions, when radiosoundings were available, calculations show differences with measurements of -2.7 ± 3.4 Wm-2 (Payerne). While no in situ radiosoundings are available, differences between modeling and measurements were about 0.3 ± 9.4 Wm-2 (Girona). During overcast sky conditions, when in situ radiosoundings and cloud properties (derived from an algorithm that uses spectral infrared and microwave ground based measurements) were available (Black Forest), calculations show differences with measurements of -0.28 ± 2.52 Wm2. When using atmospheric profiles from the ECMWF and fixed values of liquid water path and droplet effective radius (Girona) calculations show differences with measurements of 4.0 ± 2.5 Wm2. For all analyzed sky conditions, it has been confirmed that estimations from radiative transfer modeling are remarkably better than those obtained by simple parameterizations of atmospheric emissivity.
Resumo:
This study investigates the relation between physical measurements of pure-tones, third-octave bands of noise and third-octave bands of speech and subjective judgments of auditory threshold, most-comfortable listening level (MCL) and uncomfortable-listening level (UCL) for three normally hearing listeners.
Resumo:
This study provides detailed information on the ability of healthy ears to generate distortion product otoacoustic emissions (DPOAEs).
Resumo:
This paper reviews a study to determine the maximum rate the acoustic reflex can follow pulsed stimuli in normal hearing subjects and in subjects with Meniere's Syndrome.
Resumo:
This paper discusses a study of workman's compensation claims and relationships among audiological measures, tinnitus and self-reported hearing handicap.
Resumo:
This paper reviews a study to determine the maximum rate the acoustic reflex can follow pulsed stimuli in normal hearing subjects and in subjects with Meniere's Syndrome.
Resumo:
The water vapour continuum absorption is an important component of molecular absorption of radiation in atmosphere. However, uncertainty in knowledge of the value of the continuum absorption at present can achieve 100% in different spectral regions leading to an error in flux calculation up to 3-5 W/m2 global mean. This work uses line-by-line calculations to reveal the best spectral intervals for experimental verification of the CKD water vapour continuum models in the currently least studied near-infrared spectral region. Possible sources of errors in continuum retrieval taken into account in the simulation include the sensitivity of laboratory spectrometers and uncertainties in the spectral line parameters in HITRAN-2004 and Schwenke-Partridge database. It is shown that a number of micro-windows in near-IR can be used at present for laboratory detection of the water vapour continuum with estimated accuracy from 30 to 5%.
Resumo:
The sources of ordinate error in FTIR spectrometers are reviewed with reference to measuring small out-of-band features in the spectra of bandpass filters. Procedures for identifying instrumental artefacts are described. It is shown that features well below 0.01%T can be measured reliably.