919 resultados para AUTOMATED DOCKING
Resumo:
We created a high-throughput modality of photoactivated localization microscopy (PALM) that enables automated 3D PALM imaging of hundreds of synchronized bacteria during all stages of the cell cycle. We used high-throughput PALM to investigate the nanoscale organization of the bacterial cell division protein FtsZ in live Caulobacter crescentus. We observed that FtsZ predominantly localizes as a patchy midcell band, and only rarely as a continuous ring, supporting a model of "Z-ring" organization whereby FtsZ protofilaments are randomly distributed within the band and interact only weakly. We found evidence for a previously unidentified period of rapid ring contraction in the final stages of the cell cycle. We also found that DNA damage resulted in production of high-density continuous Z-rings, which may obstruct cytokinesis. Our results provide a detailed quantitative picture of in vivo Z-ring organization.
Resumo:
BACKGROUND: Although it is well recognized that the diagnosis of hypertension should be based on blood pressure (BP) measurements taken on several occasions, notably to account for a transient elevation of BP on the first readings, the prevalence of hypertension in populations has often relied on measurements at a single visit. OBJECTIVE: To identify an efficient strategy for assessing reliably the prevalence of hypertension in the population with regards to the number of BP readings required. DESIGN: Population-based survey of BP and follow-up information. SETTING AND PARTICIPANTS: All residents aged 25-64 years in an area of Dar es Salaam (Tanzania). MAIN OUTCOME MEASURES: Three BP readings at four successive visits in all participants with high BP (n = 653) and in 662 participants without high BP, measured with an automated BP device.RESULTS BP decreased substantially from the first to third readings at each of the four visits. BP decreased substantially between the first two visits but only a little between the next visits. Consequently, the prevalence of high BP based on the third reading--or the average of the second and third readings--at the second visit was not largely different compared to estimates based on readings at the fourth visit. BP decreased similarly when the first three visits were separated by 3-day or 14-day intervals. CONCLUSIONS: Taking triplicate readings on two visits, possibly separated by just a few days, could be a minimal strategy for assessing adequately the mean BP and the prevalence of hypertension at the population level. A sound strategy is important for assessing reliably the burden of hypertension in populations.
Resumo:
Because of the emergence of dried blood spots (DBS) as an attractive alternative to conventional venous plasma sampling in many pharmaceutical companies and clinical laboratories, different analytical approaches have been developed to enable automated handling of DBS samples without any pretreatment. Associated with selective and sensitive MS-MS detection, these procedures give good results in the rapid identification and quantification of drugs (generally less than 3 min total run time), which is desirable because of the high throughput requirements of analytical laboratories. The objective of this review is to describe the analytical concepts of current direct DBS techniques and to present their advantages and disadvantages, with particular focus on automation capacity and commercial availability. Finally, an overview of the different biomedical applications in which these concepts could be of major interest will be presented.
Resumo:
Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.