953 resultados para ASYMMETRIC ARYLATION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

CI3H17N5Os.C2H6OS, Mr=401.23, orthorhombic,P21212 p grown from Me2SO, a = 10.749 (2),b = 13.219 (2), c = 14.056 (2) A, V= 1997-23 A 3, Z =4, D_=1.40, D x=l.335Mgm -3, 2(CuKa)= 1.5418/~', g = 1.694 mm -~, F(000) = 848.00, T=293K, R =0.0538, wR =0.0634 for 2105 unique reflections with F > 3o(F). The asymmetric unit contains one nucleoside molecule with a disordered solvent Me2S_O molecule. The geometry about the C(4')-C(5') bond is gauche-gauche. The guanosine base is in the anti conformation with the furanose ring having C(3')-exo (E 3) puckering. The bases do not show any stacking in contrast to other guanosine-containing structures. The crystal structure is stabilized by N--H...N and N--H...O hydrogen bonding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CI2HI4N206, Mr=282"3, orthorhombic,P21212 t, a = 10.412 (2), b = 14.936 (2), c =16.651(3),/k, V=2589.46A 3, Z--8, Din= 1.450, D x = 1.447 Mg m -3, 2(Cu Kct) = 1.5418/~, # =0.902mm -~, F(000)-- 1184.00, T= 293 K, R = 0.039, wR--0.038 for 2548 unique reflections with F > 3a(F). The two crystallographically independent molecules in the asymmetric unit have similar geome-tries with the ribose ring having an O(4')-exo, C(4')-endo pucker and the uracil base in the anti conformation.The geometry about the exocyclic C(4')-C(5') bond in both molecules is gauche-gauche. The dioxolane ring assumes twist conformations in both molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

CsH9N304, M r= 175.1, orthorhombic,P212~2 ~, a = 7.486 (1), b = 9.919 (2), c =20.279 (2) A, V= 1505.8 A 3, z = 8, D x = 1.54, D m = 1.60 Mg m -3, ~,(Cu Ka) = 1.5418 A, g = 1. I I mm -~, F(000) = 736, T = 300 K, final R = 0.032 for 1345 observed reflections. The two independent molecules in the asymmetric unit are related by a pseudo twofold axis, with the asparagine side chains having different conformations [X 2 being -132.1 (3) and 139.6 (2)°]. The crystal structure is stabilized by extensive hydrogen bonding, with a specific interaction between the carboxyl group of one molecule and the carbamoyl group of another forming hydrogen-bonded chains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The title compound, C18H16N2O, crystallizes in the triclinic space group P1, with four independent molecules in the asymmetric unit wherein two molecules have an irregular -ac, -ac, +ap conformation (ap, antiperiplanar; ac, anticlinal), while the other molecules exhibit a different, +ac, +ac, +ap conformation. The planar (r.m.s. deviation = 0.006 A in each of the four molecules) quinoline ring systems of the four molecules are oriented at dihedral angles of 32.8 (2), 33.4 (2), 31.7 (2) and 32.3 (2)degrees with respect to the benzene rings. Intramolecular N-H...N interactions occur in all four independent molecules. The crystal packing is stabilized by intermolecular N-H...O and C-H...O hydrogen bonds, and are further consolidated by C-H...pi and pi-pi stacking interactions centroid-centroid distances = 3.728 (3), 3.722 (3), 3.758 (3) and 3.705 (3) A].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sym-homospermidine, [formula; see text] is a naturally occurring rare-polyamine found in relatively large concentration in sandal leaves. As part of our studies on structure and interactions of polyamines, ym-homospermidine was purified from sandal leaves and its structure was determined by single crystal X-ray diffraction technique. The phosphate salt of the molecule crystallized in the triclinic space group P1- with a = 8.246(1)A, b = 8.775(1)A, c = 15.531(2)A, alpha = 74.20(1) degrees, beta = 88.36(1) degrees and gamma = 65.41(1) degrees. The structure was determined by direct methods and refined to a final R factor of 5.4% for 2087 reflections with magnitude of F(obs) greater than 5 sigma [F(obs)]. The amine exists in its most favourable all trans conformation. For each amine molecule three phosphate groups exist in the crystal structure, suggesting that two of the oxygens of each phosphate group are protonated. There is also a single water molecule in the asymmetric unit in contrast to that of spermidine phosphate which has 3 water molecules. These differences probably reflect the hydrogen bonding properties of mono-ionic and di-ionic phosphate groups. The structure is predominantly stabilized by a network of hydrogen bonds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The crystal state conformations of three peptides containing the a,a-dialkylated residues, a,adi n-propylglycine (Dpg) and a,@-di-n-butylglycine (Dbg), have been established by x-ray diffraction. Boc-Ala-Dpg-Ala-OMe ( I ) and Boc-Ala-Dbg-Ala-OMe (III) adopt distorted type II @-turn conformations with Ala ( I ) and Dpg/Dbg (2) as the corner residues. In both peptides the conformational angles at the Dxg residue (I: 4 = 66.23 J/ = 19.3'; III: 4 = 66S0, J. = 21 .la)deviate appreciablyfrom ideal values for the i + 2 residue in a type II @-turn. In both peptides the observed(N. 0) distances between the Boc CO andAla(3) NHgroups are far too long (I:3.44 k; III: 3.63 k) for an intramolecular 4 + 1 hydrogen bond. Boc-Ala-Dpg-Ala-NHMe (II)crystallizes with two independent molecules in the asymmetric unit. Both molecules IIA and IIB adopt consecutive @-turn (type III-III in IIA and type III-I in IIB) or incipient 3,,,-helical structures, stabilized by two intramolecular 4 --t I hydrogen bonds. In all four molecules the bond angle N-C"-C' ( T ) at the Dxg residues are 2 1109 The observation of conformational angles in the helical region of 4,J/ space at these residues is consistent with theoretical predictions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structures of [Nd-2(Acc(6))(H2O)(6)](ClO4)(6) .(H2O)(6) (1) [Er-2(Acc(6))(4)(H2O)(8)](ClO4)(6) .(H2O)(11) (2) and [Ca-5(Acc(6))(12)(H2O)(6)](ClO4)(10).(H2O)(4) (3) (Acc(6) = 1-aminocyclohexane-1-carboxylic acid) have been determined by X-ray crystallography. The lanthanide complexes 1 and 2 are dimeric in which two lanthanide cations are bridged by four carboxylato groups of Acc(6) molecules. In addition, the neodymium complex (1) features the unidentate coordination of the carboxyl group of an Acc(6) molecule in place of a water molecule in the erbium complex (2). The coordination number in both 1 and 2 is eight. The calcium Acc(6) complex (3) is polymeric; three different calcium environments are observed in the asymmetric unit. Two calcium ions are hexa-coordinated and one is hepta-coordinated. Considerable differences are observed between the solid state structures of Ln(III) and Ca-II complexes of Acc(6

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is primarily concerned with the enzyme- catalysed synthesis of sulfoxides using reductase and dioxygenase enzymes. Chapter 1 provides an introduction to the topic of redox chemistry with particular emphasis on the application of reductase and dioxygenase enzymes in organosulfur chemistry. Earlier literature methods for the production of enantiopure sulfoxides are reviewed. A brief discussion of the methods used for the determination of enantiomeric excess and absolute configuration is provided. Chapter 2 contains results obtained using a range of whole-cell bacteria each using a dimethyl sulfoxide reductase enzyme. The synthesis of a series of racemic sulfoxides and the development of appropriate CSPHPLC analytical methods is discussed. Kinetic resolutions of a series of sulfoxides have been achieved. Chapter 3 contains a presentation of results using dioxygenase enzymes as biocatalysts for the asymmetric sulfoxidation of dialkyl sulfoxides including thioacetal sulfoxides. A new range of monosulfoxides, cis-dihydrodiols and cis- dihydrodiol sulfoxides have been isolated in enantiopure form. Chapter 4 is focussed on the application of chiral sulfoxides in synthesis. A new chemoenzymatic route to diol sulfoxide enantiomers and the derived enantiopure phenols and catechols is discussed. The application of chemically synthesised sulfoxide enantiomers in the production of hydroxy sulfoxides is reported. Chapter 5 provides a full experimental section where the synthesis of sulfides and racemic sulfoxides is included. The methods used in the isolation and characterisation of bioproducts from the biotransformation are discussed and full experimental details given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SHMT (serine hydoxymethyltransferase), a type I pyridoxal 5'-phosphate-dependent enzyme, catalyses the conversion of L-serine and THF (tetrahydrofolate) into glycine and 5,10 -methylene THE SHMT also catalyses several THF-independent side reactions such as cleavage of P-hydroxy amino acids, trans-amination, racemization and decarboxylation. In the present study, the residues Asn(341), Tyr(60) and Phe(351), which are likely to influence THF binding, were mutated to alanine, alanine and glycine respectively, to elucidate the role of these residues in THF-dependent and -independent reactions catalysed by SHMT. The N341A and Y60A bsSHMT (Bacillus stearothermophilus SHMT) mutants were inactive for the THF-dependent activity, while the mutations had no effect on THF-independent activity. However, mutation of Phe(351) to glycine did not have any effect oil either of the activities. The crystal structures of the glycine binary complexes of the mutants showed that N341A bsSHMT forms an external aldimine as in bsSHMT, whereas Y60A and F351G bsSHMTs exist as a Mixture of internal/external aldimine and gem-diamine forms. Crystal structures of all of the three Mutants obtained in the presence of L-allo-threonine were similar to the respective glycine binary complexes. The structure of the ternary complex of F351G bsSHMT with glycine and FTHF (5-formyl THF) showed that the monoglutamate side chain of FTHF is ordered in both the subunits of the asymmetric unit, unlike in the wild-type bsSHMT. The present studies demonstrate that the residues Asn(341) and Tyr(60) are pivotal for the binding of THF/FTHF, whereas Phe(351) is responsible for the asymmetric binding of FTHF in the two subunits of the dimer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure of cadaverine dihydrochloride monohydrate has been determined by X-ray crystallography with the following features: NH3+(CH2)5NH3+.2Cl-.H2O, formula weight 191.1, monoclinic, P2, a = 11.814(2) angstrom, b = 4.517(2) angstrom, c = 20.370(3) angstrom, beta = 106.56-degrees(1): V = 1041.9(2) angstrom3, lambda = 1.541 angstrom; mu = 53.4 1; T = 296-degrees; Z = 4, D(x) = 1.218 g.cm-3, R = 0.101 for 1383 observed reflections. The crystal is highly pseudosymmetric with 2 molecules of cadaverine, 4 chloride ions and 2 partially disordered water molecules present in the asymmetric unit. Though both the cadaverine molecules in the asymmetric unit have an all trans conformation, the carbon backbones are slightly bent. Between the concave surfaces of two bent cadaverine molecules exists water channels all along the short b axis. The water molecules present in the channels are partially disordered

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By the reaction of Ru2Cl(O2CAr)4 (1) and PPh3 in MeCN-H2O the diruthenium(II,III) and diruthenium(II) compounds of the type Ru2(OH2)Cl(MeCN)(O2CAr)4(PPh3)2 (2) and Ru2(OH2)(MeCN)2(O2CAr)4(PPh3)2 (3) were prepared and characterized by analytical, spectral, and electrochemical data (Ar is an aryl group, C6H4-p-X; X = H, OMe, Me, Cl, NO2). The molecular structure of Ru2(OH2)Cl(MeCN)(O2CC6H4-p-OMe)4(PPh3)2 was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.538 (5) angstrom, b = 15.650 (4) angstrom, c = 18.287 (7) angstrom, alpha = 101.39 (3)-degrees, beta = 105.99 (4)-degrees, gamma = 97.94 (3)-degrees, V = 3574 angstrom 3, Z = 2. The molecule is asymmetric, and the two ruthenium centers are clearly distinguishable. The Ru(III)-Ru(II), Ru(III)-(mu-OH2), and Ru(II)-(mu-OH2) distances and the Ru-(mu-OH2)-Ru angle in [{Ru(III)Cl(eta-1-O2CC6H4-p-OMe)(PPh3)}(mu-OH2)(mu-O2CC6H4-p-OMe)2{Ru(II)(MeCN)(eta-1-O2CC6H4-p-OMe)(PPh3)}] are 3.604 (1), 2.127 (8), and 2.141 (10) angstrom and 115.2 (5)-degrees, respectively. The compounds are paramagnetic and exhibit axial EPR spectra in the polycrystalline form. An intervalence transfer (IT) transition is observed in the range 900-960 nm in chloroform in these class II type trapped mixed-valence species 2. Compound 2 displays metal-centered one-electron reduction and oxidation processes near -0.4 and +0.6 V (vs SCE), respectively in CH2Cl2-TBAP. Compound 2 is unstable in solution phase and disproportionates to (mu-aquo)diruthenium(II) and (mu-oxo)diruthenium(III) complexes. The mechanistic aspects of the core conversion are discussed. The molecular structure of a diruthenium(II) compound, Ru2(OH2)(MeCN)2(O2CC6H4-p-NO2)4(PPh3)2.1.5CH2Cl2, was obtained by X-ray crystallography. The compound crystallizes in the space group P2(1)/c with a = 23.472 (6) angstrom, b = 14.303 (3) angstrom, c = 23.256 (7) angstrom, beta = 101.69 (2)-degrees, V = 7645 angstrom 3, and Z = 4. The Ru(II)-Ru(II) and two Ru(II)-(mu-OH2) distances and the Ru(II)-(mu-OH2)-Ru(II) angle in [{(PPh3)-(MeCN)(eta-1-O2CC6H4-p-NO2)Ru}2(mu-OH2)(mu-O2CC6H4-p-NO2)2] are 3.712 (1), 2.173 (9), and 2.162 (9) angstrom and 117.8 (4)-degrees, respectively. In both diruthenium(II,III) and diruthenium(II) compounds, each metal center has three facial ligands of varying pi-acidity and the aquo bridges are strongly hydrogen bonded with the eta-1-carboxylato facial ligands. The diruthenium(II) compounds are diamagnetic and exhibit characteristic H-1 NMR spectra in CDCl3. These compounds display two metal-centered one-electron oxidations near +0.3 and +1.0 V (vs SCE) in CH2Cl2-TBAP. The overall reaction between 1 and PPh3 in MeCN-H2O through the intermediacy of 2 is of the disproportionation type. The significant role of facial as well as bridging ligands in stabilizing the core structures is observed from electrochemical studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fluid-flow pattern and residence-time distribution (r.t.d.) of the fluid in a continuous casting mould have been studied using a water model. The two recirculating zones below the discharge ports have been found to be asymmetric. The effect of casting speed, discharge port diameter, shroud well depth and the immersion depth on r.t.d. have been investigated. The r.t.d. curve has been well represented by a model of two backmix cells of equal volume in series. The exist of the fluid has been found to be non-uniform across the cross-section of the mould. The fluid-flow pattern has been observed to change with time in a random fashion. Dead volume of upto 31.8% has been found with smaller discharge ports.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diruthenium(II,III) compound [Ru2Cl(O2CC6H4-p-OMe)4](H2O)0.25 (1) has been prepared and its crystal structure determined by X-ray studies. The crystals belong to the triclinic space group, PImage , and the asymmetric unit consists of one full dimer and two half dimers. The {Ru2(O2CC6H4-p-OMe)4+} units are bridged by chloride ions into an infinite zigzag chain, with an average Ru---Cl distance and Ru---Cl---Ru angle of 2.567(2) Å and 121.0(1)°, respectively. The average Ru---Ru distance of 2.286(1) Å in 1 is comparable with that in analogous tetra-alkylcarboxylates, Ru2Cl(O2CR)4 and tetra-amidates, Ru2Cl(ArCONH)4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Highly stable varistor (voltage-limiting) property is observed for ceramics based on donor doped (Ba1-xSrx)Ti1-yZryO3 (x < 0.35, y < 0.05), when the ambient temperature (T(a)) is above the Curie point (T(c)). If T(a) < T(c), the same ceramics showed stable current-limiting behavior. The leakage current and the breakdown voltage as well as the nonlinearity coefficient (alpha = 30-50) could be varied with the T(c)-shifting components, the grain boundary layer modifiers and the post-sintering annealing. Analyses of the current-voltage relations show that grain boundary layer conduction at T(a) < T(c) corresponds to tunneling across asymmetric barriers formed under steady-state joule heating. At T(a) > T(c), trap-related conduction gives way to tunneling across symmetric barriers as the field strength increases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

X-ray crystallographlc studies on 3′–5′ ollgomers have provided a great deal of information on the stereochemistry and conformational flexibility of nucleic acids and polynucleotides. In contrast, there is very little Information available on 2′–5′ polynucleotides. We have now obtained the crystal structure of Cytidylyl-2′,5′-Adenoslne (C2′p5′A) at atomic resolution to establish the conformational differences between these two classes of polymers. The dlnucleoside phosphate crystallises in the monocllnlc space group C2, with a = 33.912(4)Å, b =16.824(4)Å, c = 12.898(2)Å and 0 = 112.35(1) with two molecules in the asymmetric unit. Spectacularly, the two independent C2′p5′A molecules in the asymmetric unit form right handed miniature parallel stranded double helices with their respective crystallographic two fold (b axis) symmetry mates. Remarkably, the two mini duplexes are almost indistinguishable. The cytosines and adenines form self-pairs with three and two hydrogen bonds respectively. The conformation of the C and A residues about the glycosyl bond is anti same as in the 3′–5′ analog but contrasts the anti and syn geometry of C and A residues in A2′p5′C. The furanose ring conformation is C3′endo, C2′endo mixed puckering as in the C3′p5′A-proflavine complex. A comparison of the backbone torsion angles with other 2′–5′ dinucleoside structures reveals that the major deviations occur in the torsion angles about the C3′–C2′ and C4′-C3′ bonds. A right-handed 2′–5′ parallel stranded double helix having eight base pairs per turn and 45° turn angle between them has been constructed using this dinucleoside phosphate as repeat unit. A discussion on 2′–5′ parallel stranded double helix and its relevance to biological systems is presented.