947 resultados para APP, Altern, Alzheimer, Neuroprotektion
Resumo:
A survey of 106 cases of Alzheimer's disease (AD) indicated that senile plaques (SP) and neurofibrillary tangles (NFT) were recorded as frequent or abundant in the visual cortex in 72% and 27% of cases respectively. Comparable estimates for other brain regions were 89% for both lesions in temporal cortex and 94% and 95% respectively in the hippocampus. In 18 cases studied in detail, the density of SP and NFT was greater in B19/18 than in B17 in cases with early onset and short duration. The density of SP and NFT in B17, B18/19 and parietal cortex was negatively correlated with age at death of the patient but not with duration of the disease. In about 50% of tissue sections examined SP and NFT were clustered at a particular depth in the cortex. Clustering was more frequent in the upper layers of the cortex and in early onset cases. It was concluded that visual stimuli that evoke activity in different areas of visual cortex might be developed as a diagnostic test for early onset AD.
Resumo:
The spatial arrangement patterns of senile plaques have been studied in 10 micron cresyl violet stained sections cut from embedded portions of 20 brain regions from SDAT brains. Two studies are reported: an initial study using the Poisson distribution and a subsequent study using pattern analysis. The initial study indicated that plaques are arranged in discrete clumps in all brain regions when examined at x100 and x400 – suggesting that both small and larger scale clumping may be present. The pattern analysis study was applied to 8 cortical regions. This technique allows a more detailed study of pattern to be made. In all regions the technique revealed that the basic pattern of plaque arrangement is the regularly spaced discrete clump – which may be present on both large and small scales.
Resumo:
In this, the first of a series of articles, the natural history of Alzheimer's disease will be discussed as well as the methods of diagnosis and the pathological changes which underlie the symptoms.
Resumo:
This article describes the pathological changes that have been observed in different parts of the visual system in Alzheimer's disease as well as the visual symptoms which may result from these changes.
Resumo:
As a result of the increasing proportion of elderly people in the UK population, it is likely that the optometrist will see patients with dementia in the practice. These patients pose particular problems for the optometrist who has to carry out refraction or an eye examination. Since each case of dementia is unique, it is impossible to give guidelines which will ensure the cooperation of all patients. However, a knowledge of the changes in personality shown by patients and the special problems that can arise is helpful in attempting to test the demented patient.
Resumo:
A potential non-invasive neurobiological test for Alzheimer's disease has been recently proposed and published. This test is likely to be of considerable interest to optometrists as it involves measurements of pupil dilation. This article decsribes some of the controversial issues surrounding the clinical diagnosis of Alzheimer's disease and discusses the advantages, limitations, and implications of the new test.
Resumo:
We have studied the spatial distribution of plaques in coronal and tangential sections of the parahippocampal gyrus (PHG), the hippocampus, the frontal lobe and the temporal lobe of five SDAT patients. Sections were stained with cresyl violet and examined at two magnifications (x100 and x400). in all cases (and at both magnifications) statistical analysis using the Poisson distribution showed that the plaques were arranged in clumps (x100: V/M = 1.48 - 4.49; x400 V/M = 1.17 - 1.95). this indicates that both large scale and small scale clumping occurs. Application of the statistical techniques of pattern analysis to coronal sections of frontal and temporal cortex and PHG showed. furthermore, that both large (3200-6400 micron) and small scale (100 - 400 micron) clumps were arranged with a high degree of regularity in the tissue. This suggests that the clumps of plaques reflect underlying neural structure.
Resumo:
Numerous senile plaques are one of the most characteristic histological findings in SDAT brains. Large classical plaques may develop from smaller uncored forms. There is no strong evidence that, once formed, plaques disappear from the tissue. We have examined cresyl-violet stained sections of the parahippocampal gyrus (PHG), hippocampus, frontal lobe and temporal lobe of five SDAT patients. The frequency of various sizes of plaques were determined in each of these brain regions. Statistical analysis showed that the ratio of large plaques to small plaques was greater in the hippocampal formation (especially the PHG) than in the neocortex. One explanation of these results is that plaques grow more rapidly in the hippocampal formation than elsewhere. Alternatively, if the rate of plaque growth is much the same in different brain regions, the data suggest that plaques develop first in the hippocampal formation (especially the PHG) and only later spread to the neocortex. This interpretation is also consistent with the theory that the neuropathology of SDAT spreads from the olfactory cortex via the hippocampal formation to the neocortex. Further development of this technique may help identify the site of the primary lesion in SDAT.
Are there two distinct populations of cored senile plaques in senile dementia of the Alzheimer type?
Resumo:
The relationship between plaque diameter (PD) and core diameter (CD) was studied in four brains from each of four SDAT brains. The regions studied were parahippocampal gyrus (PHG), hippocampus, frontal and inferior temporal lobes. The largest diameters of 100 cored classical plaques and their cores were measured. CD was positively correlated with PD (Pearson's 'r' 0.4 - 0.95) in all region studied. Significant linear regressions of CD on PD with positive slopes (0.10 - 0.65) were found. Two distinct types of regression were found. Type A had a steep slope and a negative intercept on the ordinate whereas Type B had a shallow slope and a positive intercept. Both types can be found within the same brain but Type A or B predominate in a particular tissue. The data suggest that core development may occur either early or late in the development of the plaque. The two types of plaque may thus have different aetiologies. Such an interpretation is consistent with current ideas of plaque formation.
Resumo:
Tetrahydrobiopterin is the cofactor required for the biosynthesis of the neurotransmitters and neuromodulators dopamine, noradrenaline and serotonin. The results show that in SDAT there is decreased conversion of dihydroneopterin triphosphate to tetrahydrobiopterin. Further measurements on strictly age-matched SDAT subjects and controls have confirmed the trends in this investigation.
Resumo:
Subjects with Alzheimer's disease (AD) exhibit normal visually evoked potentials (VEP) to pattern reversal stimuli but a delayed P2 flash response. The pattern response may originate in the primary visual cortex via the geniculo-calcarine pathway while the flash P2 may originate in the association areas via the cholinergic-tectal pathway. We now show: a) that the pathology of AD is more prominent in the visual association areas B18/19 than in B17 and b) that the magnetic signal to flash and pattern may originate from B18/19 and B17 respectively.
Resumo:
The principal components of classical senile plaques (SP) in Alzheimer's disease (AD) appear to be A4/beta protein and paired helical filaments (PHF). A4 deposits may evolve into classical SP in brain regions vulnerable to the formation of PHF. We have investigated the diatribution of A4 deposits using an immunostain and the neurofibrillary change using the Gallyas stain in various regions of the hippocampus. This region is particularly affected in AD and also has relatively restricted inputs and outputs. In 6 patients we found a significant preponderance of A4 deposits in the adjacent parahippocampal gyrus (PHG) compared with all regions of the hippocampus. However, plaque-like clusters of PHF (Gallyas plaques) were more abundant in the subiculum while neurofibrillary tangles (NFT) were more abundant in the subiculum and region CA1 compared with the PHG and other hippocampal regions. Hence, A4 deposits appear to be concentrated in the region providing a major input into the hippocampus while the neurofibrillary changes are characteristic of the major output areas (subiculum and CA1). Hence, the data suggest that A4 formation and the neurofibrillary changes may occur in regions of the hippocampus that are connected anatomically.
Resumo:
A principal components analysis was carried out on neuropathological data collected from 79 cases of Alzheimer's disease (AD) diagnosed in a single centre. The purpose of the study was to determine whether on neuropathological criteria there was evidence for clearly defined subtypes of the disease. Two principal components (PC1 and PC2) were extracted from the data. PC1 was considerable more important than PC2 accounting for 72% of the total variance. When plotted in relation to the first two principal components the majority of cases (65/79) were distributed in a single cluster within which subgroupings were not clearly evident. In addition, there were a number of individual, mainly early-onset cases, which were neither related to each other nor to the main cluster. The distribution of each neuropathological feature was examined in relation to PC1 and 2, Disease onset, rhe degree of gross brain atrophy, neuronal loss and the devlopment of senile plaques (SP) and neurofibrillary tangles (NFT) were negatively correlated with PC1. The devlopment of SP and NFT and the degree of brain athersclerosis were positively correlated with PC2. These results suggested: 1) that there were different forms of AD but no clear division of the cases into subclasses could be made based on the neuropathological criteria used; the cases showing a more continuous distribution from one form to another, 2) that disease onset was an important variable and was associated with a greater development of pathological changes, 3) familial cases were not a distinct subclass of AD; the cases being widely distributed in relation to PC1 and PC2 and 4) that there may be two forms of late-onset AD whic grade into each other, one of which was associated with less SP and NFT development but with a greater degree of brain atherosclerosis.
Resumo:
A variety of visual symptoms have been associated with Alzheimer's disease (AD). These include delays in flash visual evoked potentials which indicate a disruption of the integrity of the visual pathway. Examination of the visual cortex has revealed the presence of both senile plaques and neurofibrillary tangles. The purpose of this study was to determine whether there were differences in the number and/or size of optic nerve axons between AD patients and non-demented age-matched controls. Five optic nerves from AD patients and five from age-matched controls were embedded in epon resin and 1 micron sections prepared on a Reichert ultramicrotome. The sections were then stained in toluidine blue and examined at x400 magnification. The numbers of axons were counted in photographs of three fields taken at random from each section. To evaluate the axon diameters, 70 axons were chosen at random from each patient and measured using a calibrated eyepiece graticule. The total axon counts revealed no significant differences between the AD optic nerves and the age-matched controls. However, the frequency distribution of axon diameters was significantly different in the two groups. In particular, there were fewer larger diameter axons in patients with AD as previously reported. Degeneration of the large diameter axons suggests involvement of the magnocellular as opposed to the parvocellular pathways. Hence, there could be differences in visual performance of AD patients compared with normals which could be important in clinical diagnosis.