978 resultados para ALUMINATE GLASSES
Resumo:
New U-series isotope data for lavas from the East Scotia backarc spreading center span a large range in (230Th/232Th) and (238U/232Th). Most of the backarc lavas have (238U/230Th) < 1, similar to the composition of mid-oceanic-ridge basalts (MORB). Lavas from two segments have (238U/230Th) > 1 and are enriched in fluid-mobile elements, implying a recent addition of a U-rich slab-derived component. The data from one segment suggest an influence from an aqueous fluid from altered MORB, whereas samples from the other slab-influenced segment show addition of a sediment melt. The slab-influenced samples form a distinct trend in the equiline diagram between aqueous fluid and sediment melt that is suggested to be a mixing line rather than an isochron.
Resumo:
Rare-earth element (REE) distributions in altered basalts and glasses collected during some Legs of the Deep Sea Drilling Project show that a fractionation of these elements occurs during submarine weathering. When the alteration is well-marked, the REE distribution in altered glasses shows an enrichment in light rare-earths relative to the fresh glass. In particular, Ce is selectively enriched in palagonitized glasses that comprise, besides polymetallic nodules, another phase liable to explain the Ce depletion in seawater. Taking in account these processes of submarine weathering of the oceanic crust, a geochemical balance of Ce between authigenic phases of the marine environment is attempted.
Resumo:
Hydrothermal fluids expelled from the seafloor at high and low temperatures play pivotal roles in controlling seawater chemistry. However, the magnitude of the high temperature water flux of mid-ocean ridge axes remains widely disputed and the volume of low temperature vent fluids at ridge flanks is virtually unconstrained. Here, we determine both high and low temperature hydrothermal fluid fluxes using the chemical and isotopic mass balance of the element thallium (Tl) in the ocean crust. Thallium is a unique tracer of ocean floor hydrothermal exchange because of its contrasting behavior during seafloor alteration at low and high temperatures and the distinctive isotopic signatures of fresh and altered MORB and seawater. The calculated high temperature hydrothermal water flux is (0.17-2.93)*10**13 kg/yr with a best estimate of 0.72*10**13 kg/yr. This result suggests that only about 5 to 80% of the heat available at mid-ocean ridge axes from the crystallization and cooling of the freshly formed ocean crust, is released by high temperature black smoker fluids.The residual thermal energy ismost likely lost via conduction and/or through the circulation of intermediate temperature hydrothermal fluids that do not alter the chemical budgets of Tl in the ocean crust. The Tl-based calculations indicate that the low temperature hydrothermal water flux at ridge flanks is (0.2-5.4)*10**17 kg/yr. This implies that the fluids have an average temperature anomaly of only about 0.1 to 3.6 °C relative to ambient seawater. If these low temperatures are correct then both Sr and Mg are expected to be relatively unreactive in ridge-flank hydrothermal systems and this may explain why the extent of basalt alteration that is observed for altered ocean crust appears insufficient to balance the oceanic budgets of 87Sr/86Sr and Mg.
Resumo:
This investigation was carried on through the cooperation of the United States Atomic Energy Commission (Contract Number AT-(40-1)--1080, and the Department of Ceramic Technology of the University of Alabama.
Resumo:
"Work performed under Contract No. AT(40-1)-1080."
Resumo:
Bibliography: p. 1520-1542.
Resumo:
Mode of access: Internet.
Resumo:
"Commemorative glass, by Sir John S. Risley": p. [155]-167.
Resumo:
On verso: Nostalgia (Daybook, image #42)