995 resultados para ALPHA-PARTICLE
Resumo:
The mechanisms of material removal were studied during the erosion of two unfilled elastomers (natural rubber and epoxidised natural rubber). The effects of impact velocity and of lubrication by silicone oil were investigated. The development of surface features due to single impacts and during the early stages of erosion was followed by scanning electron microscopy. The basic material removal mechanism at impact angles of both 30° and 90° involves the formation and growth of fine fatigue cracks under the tensile surface stresses caused by impact. No damage was observed after single impacts; it was found that many successive impacts are necessary for material removal. It was found that the erosion rate has a very strong dependance on impact velocity above about 50 ms-1.
Resumo:
Boronizing is a thermochemical diffusion-based process for producing iron boride layers in the surface of steel components. The boride layer is wear resistant and is very hard. Large residual stresses are found to exist in the surface layers, which are a function of substrate steel composition and heat treatment. By slow cooling from the boronizing temperature (900°C), a large compressive stress is developed in the boride layer. Hardening the steel by rapid cooling, either directly from the boronizing treatment or after subsequent austenitizing, develops tension in the coating which causes it to fracture. Tempering of the martensite produces compression in the coating, closing but not welding the cracks. The results of solid particle erosion experiments using silicon carbide, quartz, and glass bead erodents on boronized steels are presented.
Resumo:
Sintered boron carbide is very hard, and can be an attractive material for wear-resistant components in critical applications. Previous studies of the erosion of less hard ceramics have shown that their wear resistance depends on the nature of the abrasive particles. Erosion tests were performed on a sintered boron carbide ceramic with silica, alumina and silicon carbide erodents. The different erodents caused different mechanisms of erosion, either by lateral cracking or small-scale chipping; the relative values of the hardness of the erodent and the target governed the operative mechanism. The small-scale chipping mechanism led to erosion rates typically an order of magnitude lower than the lateral fracture mechanism. The velocity exponents for erosion in the systems tested were similar to those seen in other work, except that measured with the 125 to 150 μm silica erodent. With this erodent the exponent was initially high, then decreased sharply with increasing velocity and became negative. It was proposed that this was due to deformation and fragmentation of the erodent particles. In the erosion testing of ceramics, the operative erosion mechanism is important. Care must be taken to ensure that the same mechanism is observed in laboratory testing as that which would be seen under service conditions, where the most common erodent is silica.
Resumo:
The development of high performance ceramics and ceramic composites often relies on assumptions about their behaviour during loading and at failure. A crucial influence on the mechanical properties of these materials is the degree of sub-critical cracking, which post mortem investigations cannot adequately reveal. Hence a clear picture of the dynamic micromechanisms of cracking is required if applications of fracture and damage mechanics to theoretical models is to be meaningful.