953 resultados para ALPHA-3-BETA-1 INTEGRIN
Resumo:
In this article we present for the first time accurate density functional theory (DFT) and time-dependent (TD) DFT data for a series of electronically unsaturated five-coordinate complexes [Mn(CO)(3)(L-2)](-), where L-2 stands for a chelating strong pi-donor ligand represented by catecholate, dithiolate, amidothiolate, reduced alpha-diimine (1,4-dialkyl-1,4-diazabutadiene (R-DAB), 2,2'-bipyridine) and reduced 2,2'-biphosphinine types. The single-crystal X-ray structure of the unusual compound [Na(BPY)][Mn(CO)(3)(BPY)]center dot Et2O and the electronic absorption spectrum of the anion [Mn(CO)(3)(BPY)](-) are new in the literature. The nature of the bidentate ligand determines the bonding in the complexes, which varies between two limiting forms: from completely pi-delocalized diamagnetic {(CO)(3)Mn-L-2}(-) for L-2 = alpha-diimine or biphosphinine, to largely valence-trapped {(CO)(3)Mn-1-L-2(2-)}(-) for L-2(2-) = catecholate, where the formal oxidation states of Mn and L-2 can be assigned. The variable degree of the pi-delocalization in the Mn(L-2) chelate ring is indicated by experimental resonance Raman spectra of [Mn(CO)(3)(L-2)](-) (L-2=3,5-di-tBu-catecholate and iPr-DAB), where accurate assignments of the diagnostically important Raman bands have been aided by vibrational analysis. The L-2 = catecholate type of complexes is known to react with Lewis bases (CO substitution, formation of six-coordinate adducts) while the strongly pi-delocalized complexes are inert. The five-coordinate complexes adopt usually a distorted square pyramidal geometry in the solid state, even though transitions to a trigonal bipyramid are also not rare. The experimental structural data and the corresponding DFT-computed values of bond lengths and angles are in a very good agreement. TD-DFT calculations of electronic absorption spectra of the studied Mn complexes and the strongly pi-delocalized reference compound [Fe(CO)(3)(Me-DAB)] have reproduced qualitatively well the experimental spectra. Analyses of the computed electronic transitions in the visible spectroscopic region show that the lowest-energy absorption band always contains a dominant (in some cases almost exclusive) contribution from a pi(HOMO) -> pi*(LUMO) transition within the MnL2 metallacycle. The character of this optical excitation depends strongly on the composition of the frontier orbitals, varying from a partial L-2 -> Mn charge transfer (LMCT) through a fully delocalized pi(MnL2) -> pi*(MnL2) situation to a mixed (CO)Mn -> L-2 charge transfer (LLCT/MLCT). The latter character is most apparent in the case of the reference complex [Fe(CO)(3)(Me-DAB)]. The higher-lying, usually strongly mixed electronic transitions in the visible absorption region originate in the three lower-lying occupied orbitals, HOMO - 1 to HOMO - 3, with significant metal-d contributions. Assignment of these optical excitations to electronic transitions of a specific type is difficult. A partial LLCT/MLCT character is encountered most frequently. The electronic absorption spectra become more complex when the chelating ligand L-2, such as 2,2'-bipyridine, features two or more closely spaced low-lying empty pi* orbitals.
Resumo:
Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os-3(CO)(10)(s-cis-L)] (L= cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os-3(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient la, a second CO bridge is formed in 20 ps in the photoproduct [Os-3(CO)(8)(mu-CO)(2)- (cyclohexa-1,3-diene)] (1b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.
Resumo:
The night-time tropospheric chemistry of two stress-induced volatile organic compounds (VOCs), (Z)-pent-2-en-1-ol and pent-1-en-3-ol, has been studied at room temperature. Rate coefficients for reactions of the nitrate radical (NO3) with these pentenols were measured using the discharge-flow technique. Because of the relatively low volatility of these compounds, we employed off-axis continuous-wave cavity-enhanced absorption spectroscopy for detection of NO3 in order to be able to work in pseudo first-order conditions with the pentenols in large excess over NO3. The rate coefficients were determined to be (1.53 +/- 0.23) x 10(-13) and (1.39 +/- 0.19) x 10(-14) cm(3) molecule(-1) s(-1) for reactions of NO3 with (Z)-pent-2-en-1-ol and pent-1-en-3-ol. An attempt to study the kinetics of these reactions with a relative-rate technique, using N2O5 as source of NO3 resulted in significantly higher apparent rate coefficients. Performing relative-rate experiments in known excesses of NO2 allowed us to determine the rate coefficients for the N2O5 reactions to be (5.0 +/- 2.8) x 10(-19) cm(3) molecule(-1) s(-1) for (Z)-pent-2-en-1-ol, and (9.1 +/- 5.8) x 10(-19) cm(3) molecule(-1) s(-1) for pent-1-en-3-ol. We show that these relatively slow reactions can indeed interfere with rate determinations in conventional relative-rate experiments.
Resumo:
The reaction of 2-chloro-3-methyl-1,4-naphthoquinone (3) with the anion of ethyl cyanoacetate led to a mixture of two epimeric fused-ring cyclopropane compounds, characterised as exo- and endo-1-cyano-1 -ethoxycarbonyl-1a-methyl-1a,7a-dihydro-1H-cyclopropa[b]naphthalene-2,7-dione (8) and (9). Various hydrolysis products of these were prepared and an X-ray crystallographic analysis was carried out on one of them, 1-carbamoyl-1 -carboxy-1a-methyl-1a,7a-dihydro-1H-cyclopropa[b]-naphthalene-2,7-dione (17). The reaction of 2-methyl-1,4-naphthoquinone (1) with ethyl diazoacetate gave a fused pyrazoline derivative, 3-ethoxycarbonyl-4-hydroxy-9a-methyl-1,9a-dihydro-benz[f]indazol-9-one (22), while reaction of 2-methyl-3-nitro-1,4-naphthoquinone (5) with diazomethane led to a fused Δ2-isoxazoline N-oxide, 3a-methyl-3,3a-dihydroisoxazolo[3,4-b]naphthalene-4,9-dione 1-oxide (26).
Resumo:
The reaction of 4-phenylbut-3-en-2-one with cyanoacetamide is not confined to a 1 : 1 reaction [which results in formation of 3-cyano-6-methyl-4-phenylpyridin-2(1H)-one]. The reaction of 2 mole equivalents of 4-phenylbut-3-en-2-one with one of cyanoacetamide also takes place, the products being 1-cyano-6-hydroxy-6-methyl-4-methylene-8,9-diphenyl-3-azabicyclo[3.3.1]nonan-2-one and 3-cyano-6-methyl-3-(3-oxo-1-phenylbutyl)-4-phenyl-3,4-dihydropyridin-2(1H)-one. The latter compound cyclises in acid medium to form 6-acetyl-4-cyano-1-methyl-5,8-diphenyl-2-azabicyclo[2.2.2]octan-3-one. X-Ray crystal structures of the 3-azabicyclo[3.3.1]nonan-2-one and the 3-azabicyclo[2.2.2]octan-2-one derivatives are described.
Resumo:
Arterial hyperpolarization to acetylcholine (ACh) reflects coactivation of KCa3.1 (IKCa) channels and KCa2.3 (SKCa) channels in the endothelium that transfers through myoendothelial gap junctions and diffusible factor(s) to affect smooth muscle relaxation (endothelium-derived hyperpolarizing factor [EDHF] response). However, ACh can differentially activate KCa3.1 and KCa2.3 channels, and we investigated the mechanisms responsible in rat mesenteric arteries. KCa3.1 channel input to EDHF hyperpolarization was enhanced by reducing external [Ca2+]o but blocked either with forskolin to activate protein kinase A or by limiting smooth muscle [Ca2+]i increases stimulated by phenylephrine depolarization. Imaging [Ca2+]i within the endothelial cell projections forming myoendothelial gap junctions revealed increases in cytoplasmic [Ca2+]i during endothelial stimulation with ACh that were unaffected by simultaneous increases in muscle [Ca2+]i evoked by phenylephrine. If gap junctions were uncoupled, KCa3.1 channels became the predominant input to EDHF hyperpolarization, and relaxation was inhibited with ouabain, implicating a crucial link through Na+/K+-ATPase. There was no evidence for an equivalent link through KCa2.3 channels nor between these channels and the putative EDHF pathway involving natriuretic peptide receptor-C. Reconstruction of confocal z-stack images from pressurized arteries revealed KCa2.3 immunostain at endothelial cell borders, including endothelial cell projections, whereas KCa3.1 channels and Na+/K+-ATPase {alpha}2/{alpha}3 subunits were highly concentrated in endothelial cell projections and adjacent to myoendothelial gap junctions. Thus, extracellular [Ca2+]o appears to modify KCa3.1 channel activity through a protein kinase A-dependent mechanism independent of changes in endothelial [Ca2+]i. The resulting hyperpolarization links to arterial relaxation largely through Na+/K+-ATPase, possibly reflecting K+ acting as an EDHF. In contrast, KCa2.3 hyperpolarization appears mainly to affect relaxation through myoendothelial gap junctions. Overall, these data suggest that K+ and myoendothelial coupling evoke EDHF-mediated relaxation through distinct, definable pathways.
Resumo:
Our differences are three. The first arises from the belief that "... a nonzero value for the optimally chosen policy instrument implies that the instrument is efficient for redistribution" (Alston, Smith, and Vercammen, p. 543, paragraph 3). Consider the two equations: (1) o* = f(P3) and (2) = -f(3) ++r h* (a, P3) representing the solution to the problem of maximizing weighted, Marshallian surplus using, simultaneously, a per-unit border intervention, 9, and a per-unit domestic intervention, wr. In the solution, parameter ot denotes the weight applied to producer surplus; parameter p denotes the weight applied to government revenues; consumer surplus is implicitly weighted one; and the country in question is small in the sense that it is unable to affect world price by any of its domestic adjustments (see the Appendix). Details of the forms of the functions f((P) and h(ot, p) are easily derived, but what matters in the context of Alston, Smith, and Vercammen's Comment is: Redistributivep referencest hatf avorp roducers are consistent with higher values "alpha," and whereas the optimal domestic intervention, 7r*, has both "alpha and beta effects," the optimal border intervention, r*, has only a "beta effect,"-it does not have a redistributional role. Garth Holloway is reader in agricultural economics and statistics, Department of Agricultural and Food Economics, School of Agriculture, Policy, and Development, University of Reading. The author is very grateful to Xavier Irz, Bhavani Shankar, Chittur Srinivasan, Colin Thirtle, and Richard Tiffin for their comments and their wisdom; and to Mario Mazzochi, Marinos Tsigas, and Cal Turvey for their scholarship, including help in tracking down a fairly complete collection of the papers that cite Alston and Hurd. They are not responsible for any errors or omissions. Note, in equation (1), that the border intervention is positive whenever a distortion exists because 8 > 0 implies 3 - 1 + 8 > 1 and, thus, f((P) > 0 (see Appendix). Using Alston, Smith, and Vercammen's definition, the instrument is now "efficient," and therefore has a redistributive role. But now, suppose that the distortion is removed so that 3 - 1 + 8 = 1, 8 = 0, and consequently the border intervention is zero. According to Alston, Smith, and Vercammen, the instrument is now "inefficient" and has no redistributive role. The reader will note that this thought experiment has said nothing about supporting farm incomes, and so has nothing whatsoever to do with efficient redistribution. Of course, the definition is false. It follows that a domestic distortion arising from the "excess-burden argument" 3 = 1 + 8, 8 > 0 does not make an export subsidy "efficient." The export subsidy, having only a "beta effect," does not have a redistributional role. The second disagreement emerges from the comment that Holloway "... uses an idiosyncratic definition of the relevant objective function of the government (Alston, Smith, and Vercammen, p. 543, paragraph 2)." The objective function that generates equations (1) and (2) (see the Appendix) is the same as the objective function used by Gardner (1995) when he first questioned Alston, Carter, and Smith's claim that a "domestic distortion can make a border intervention efficient in transferring surplus from consumers and taxpayers to farmers." The objective function used by Gardner (1995) is the same objective function used in the contributions that precede it and thus defines the literature on the debate about borderversus- domestic intervention (Streeten; Yeh; Paarlberg 1984, 1985; Orden; Gardner 1985). The objective function in the latter literature is the same as the one implied in another literature that originates from Wallace and includes most notably Gardner (1983), but also Alston and Hurd. Amer. J. Agr. Econ. 86(2) (May 2004): 549-552 Copyright 2004 American Agricultural Economics Association This content downloaded on Tue, 15 Jan 2013 07:58:41 AM All use subject to JSTOR Terms and Conditions 550 May 2004 Amer. J. Agr. Econ. The objective function in Holloway is this same objective function-it is, of course, Marshallian surplus.1 The third disagreement concerns scholarship. The Comment does not seem to be cognizant of several important papers, especially Bhagwati and Ramaswami, and Bhagwati, both of which precede Corden (1974, 1997); but also Lipsey and Lancaster, and Moschini and Sckokai; one important aspect of Alston and Hurd; and one extremely important result in Holloway. This oversight has some unfortunate repercussions. First, it misdirects to the wrong origins of intellectual property. Second, it misleads about the appropriateness of some welfare calculations. Third, it prevents Alston, Smith, and Vercammen from linking a finding in Holloway (pp. 242-43) with an old theorem (Lipsey and Lancaster) that settles the controversy (Alston, Carter, and Smith 1993, 1995; Gardner 1995; and, presently, Alston, Smith, and Vercammen) about the efficiency of border intervention in the presence of domestic distortions.
Resumo:
Phenylephrine and noradrenaline (alpha-adrenergic agonism) or isoprenaline (beta-adrenergic agonism) stimulated protein synthesis rates, increased the activity of the atrial natriuretic factor gene promoter and activated mitogen-activated protein kinase (MAPK). The EC50 for MAPK activation by noradrenaline was 2-4 microM and that for isoprenaline was 0.2-0.3 microM. Maximal activation of MAPK by isoprenaline was inhibited by the beta-adrenergic antagonist, propranolol, whereas the activation by noradrenaline was inhibited by the alpha1-adrenergic antagonist, prazosin. FPLC on a Mono-Q column separated two peaks of MAPK (p42MAPK and p44MAPK) and two peaks of MAPK-activating activity (MEK) activated by isoprenaline or noradrenaline. Prolonged phorbol ester exposure partially down-regulated the activation of MAPK by noradrenaline but not by isoprenaline. This implies a role for protein kinase C in MAPK activation by noradrenaline but not isoprenaline. A role for cyclic AMP in activation of the MAPK pathway was eliminated when other agonists that elevate cyclic AMP in the cardiac myocyte did not activate MAPK. In contrast, MAPK was activated by exposure to ionomycin, Bay K8644 or thapsigargin that elevate intracellular Ca2+. Furthermore, depletion of extracellular Ca2+ concentrations with bis-(o-aminophenoxy)ethane-NNN'N'-tetra-acetic acid (BAPTA) or blocking of the L-type Ca2+ channel with nifepidine or verapamil inhibited the response to isoprenaline without inhibiting the responses to noradrenaline. We conclude that alpha- and beta-adrenergic agonists can activate the MEK/MAPK pathway in the heart by different signalling pathways. Elevation of intracellular Ca2+ rather than cyclic AMP appears important in the activation of MAPK by isoprenaline in the cardiac myocyte.
Resumo:
In the vertebrate brain, the thalamus serves as a relay and integration station for diverse neuronal information en route from the periphery to the cortex. Deficiency of TH during development results in severe cerebral abnormalities similar to those seen in the mouse when the retinoic acid receptor (ROR)α gene is disrupted. To investigate the effect of the thyroid hormone recep-tors (TRs) on RORalpha gene expression, we used intact male mice, in which the genes encoding the α and beta TRs have been deleted. In situ hybridization for RORalpha mRNA revealed that this gene is expressed in specific areas of the brain including the thalamus, pons, cerebellum, cortex, and hippocampus. Our quantitative data showed differences in RORalpha mRNA expression in different subthalamic nuclei between wild-type and knock-out mice. For example, the centromedial nucleus of the thalamus, which plays a role in mediating nociceptive and visceral information from the brainstem to the basal ganglia and cortical regions, has less expression of RORalpha mRNA in the knockout mice (-37%) compared to the wild-type controls. Also, in the dorsal geniculate (+72%) and lateral posterior nuclei (+58%) we found more RORalpha mRNA in dKO as compared to dWT animals. Such differences in RORalpha mRNA expression may play a role in the behavioral alterations resulting from congenital hypothyroidism.
Resumo:
BACKGROUND: Chloroform, ethyl acetate and methanol extracts of a sample of red propolis from the state of Alagoas (northeast Brazil) were analyzed by gas chromatography-mass spectrometry and high-performance liquid chromatography-diode array detection-electrospray ionization-mass spectrometry. Antimicrobial and antioxidant activities were also obtained. RESULTS: The propolis sample contained low content of narigenin-8-C-hexoside, this being the first report of a C-glycoside in propolis. The main constituent found was characterized as 3,4,2`,3`-tetrahydroxychalcone. Other important constituents were the chalcone isoliquiritigenin, the isoflavans (3S)-vestitol, (3S)-7-O-methylvestitol, the pterocarpan medicarpin, the phenylpropenes trans-anethol, methyl eugenol, elimicin, methoxyeugenol and cis-asarone, and the triterpenic alcohols lupeol and alpha- and beta- amyrins. The methanol extract exhibited high antioxidant activities by 2,2-diphenyl-1-picrylhydrazyl and beta-carotene/linoleic acid assay methods, and antimicrobial activity toward Gram-positive and Gram-negative bacteria. CONCLUSION: Structures are suggested for new substances never before seen in any kind of propolis. This is the first report of 3,4,2`,3`-tetrahydroxychalcone and a flavone C-glycoside in a propolis sample. (C) 2011 Society of Chemical Industry
Resumo:
Inflammation is a crucial step for the wound healing process. The effect of linoleic and oleic acids on the inflammatory response of the skin during the healing process and on the release of pro-inflammatory cytokines by rat neutrophils in vitro was investigated. A wound in the dorsal surface of adult rats was performed and fatty acids were then topically administered. Both oleic and linoleic acids increased the wound healing tissue mass. The total protein and DNA contents of the wounds were increased by the treatment with linoleic acid. The treatments with oleic and linoleic acids did not affect vascular permeability. However, the number of neutrophils in the wounded area and air pouches was increased and the thickness of the necrotic cell layer edge around the wound was decreased. A dose-dependent increase in vascular endothelial growth factor-alpha (VEGF-alpha) and interleukin-1 beta (IL-1 beta) by neutrophils incubated in the presence of oleic and linoleic acid was observed. Oleic acid was able to stimulate also the production of cytokine-induced neutrophil chemoattractant in inflammation 2 alphalbeta (CINC-2 alpha/beta). This pro-inflammatory effect of oleic and linoleic acids may speed up the wound healing process. Copyright (c) 2007 John Wiley & Sons, Ltd.
Resumo:
The high ingestion of oleic (OLA) and linoleic (LNA) acids by Western populations, the presence of inflammatory diseases in these populations, and the importance of neutrophils in the inflammatory process led us to investigate the effects of oral ingestion of unesterified OLA and LNA on rat neutrophil function. Pure OLA and LNA were administered by gavage over 10 days. The doses used (0.11, 0.22 and 0.44 g/kg of body weight) were based on the Western consumption of OLA and LNA. Neither fatty acid affected food, calorie or water intake. The fatty acids were not toxic to neutrophils as evaluated by cytometry using propidium iodide (membrane integrity and DNA fragmentation). Neutrophil migration in response to intraperitoneal injection of glycogen and in the air pouch assay, was elevated after administration of either OLA or LNA. This effect was associated with enhancement of rolling and increased release of the chemokine CINC-2 alpha beta. Both fatty acids elevated l-selectin expression, whereas no effect on beta(2)-integrin expression was observed, as evaluated by flow cytometry. LNA increased the production of proinflammatory cytokines (IL-1 beta and CINC-2 alpha beta) by neutrophils after 4 h in culture and both fatty acids decreased the release of the same cytokines after 18 h. In conclusion, OLA and LNA modulate several functions of neutrophils and can influence the inflammatory process.
Resumo:
Glucose transporter 4 (GLUT4) expression in adipose tissue decreases during fasting. In skeletal muscle, we hypothesized that GLUT4 expression might be maintained in a beta-adrenergic-dependent way to ensure energy disposal for contractile function. Herein we investigate beta-blockade or beta-stimulation effects on GLUT4 expression in oxidative (soleus) and glycolytic [extensor digitorum longus (EDL)] muscles of fasted rats. Fasting increased GLUT4 mRNA in soleus (24%) and EDL (40%) but the protein content increased only in soleus (30%). beta 1-beta 2-, and beta 1-beta 2-beta 3-blockade decreased (20-30%) GLUT4 mRNA content in both muscles, although GLUT4 protein decreased only in EDL. When mRNA and GLUT4 protein regulations were discrepant, changes in the mRNA poly(A) tail length were detected, indicating a posttranscriptional modulation of gene expression. These results show that beta-adrenergic activity regulates GLUT4 gene expression in skeletal muscle during fasting, highlighting its participation in preservation of GLUT4 protein in glycolytic muscle. Muscle Nerve 40: 847-854, 2009
Resumo:
SCFAs (short-chain fatty acids) are produced by anaerobic bacterial fermentation. Increased concentrations of these fatty acids are observed in inflammatory conditions, such as periodontal disease, and at sites of anaerobic infection. In the present study, the effect of the SCFAs acetate, propionate and butyrate on neutrophil chemotaxis and migration was investigated. Experiments were carried out in rats and in vitro. The following parameters were measured: rolling, adherence, expression of adhesion molecules in neutrophils (L-selectin and beta 2 integrin), transmigration, air pouch influx of neutrophils and production of cytokines [CINC-2 alpha beta (cytokine-induced neutrophil chemoattractant-2 alpha beta), IL-1 beta (interleukin-1 beta), MIP-1 alpha (macrophage inflammatory protein-1 alpha) and TNF-alpha (tumour necrosis factor-alpha)]. SCFAs induced in vivo neutrophil migration and increased the release of CINC-2 alpha beta into the air pouch. These fatty acids increased the number of rolling and adhered cells as evaluated by intravital microscopy. SCFA treatment increased L-selectin expression on the neutrophil surface and L-selectin mRNA levels, but had no effect on the expression of beta 2 integrin. Propionate and butyrate also increased in vitro transmigration of neutrophils. These results indicate that SCFAs produced by anaerobic bacteria raise neutrophil migration through increased L-selectin expression on neutrophils and CINC-2 alpha beta release.
Resumo:
Objective. The effect of creatine supplementation upon plasma levels of pro-inflammatory cytokines: Interleukin (IL) 1 beta and IL-6, Tumor Necrosis Factor alpha (TNF alpha), and Interferon alpha (INF alpha) and Prostaglandin E(2) (PGE(2)) after a half-ironman competition were investigated. Methods. Eleven triathletes, each with at least three years experience of participation in this sport were randomly divided between the control and experimental groups. During 5 days prior to competition, the control group (n = 6) was supplemented with carbohydrate (20g center dot d(-1)) whereas the experimental group (n = 5) received creatine (20 center dot d(-1)) in a double-blind trial. Blood samples were collected 48h before and 24 and 48h after competition and were used for the measurement of cytokines and PGE(2). Results. Forty-eight hours prior to competition there was no difference between groups in the plasma concentrations (pg center dot ml(-1), mean +/- SEM) of IL-6 (7.08 +/- 0.63), TNF alpha (76.50 +/- 5.60), INF alpha (18.32 +/- 1.20), IL-1 beta (23.42 +/- 5.52), and PGE(2) (39.71 +/- 3.8). Twenty-four and 48h after competition plasma levels of TNF alpha, INF alpha, IL-1 beta and PGE(2) were significantly increased (P < 0.05) in both groups. However, the increases in these were markedly reduced following creatine supplementation. An increase in plasma IL-6 was observed only after 24h and, in this case, there was no difference between the two groups. Conclusion. Creatine supplementation before a long distance triathlon competition may reduce the inflammatory response induced by this form of strenuous of exercise.