994 resultados para AK6-434-1
Resumo:
The variation in the tensile properties at 77 K and 300 K in warm-rolled (300 K) Cd-1% Ag alloy with deformation has been studied in longitudinal as well as transverse specimens. The low-temperature yield strength increases with warm rolling without much loss in ductility. The strength at 300 K, however, decreases with heavy warm deformation. From microstructural studies and X-ray investigations, it was observed that changes in grain size and texture occur during warm rolling. Both these changes are found to be important in deciding the tensile properties. The longitudinal and transverse strengths at 77 K vary linearly with l-frac12, where l is the average grain diameter, and thus they obey the Hall-Petch relation. The Hall-Petch slope, k, is lower in specimens with favourable lcub1013rcub texture while the intercept σo is higher when the lcub0002rcub texture is less favourable.
Resumo:
Abnormal expansion or depletion of particular lymphocyte subsets is associated with clinical manifestations such as HIV progression to AIDS and autoimmune disease. We sought to identify genetic predictors of lymphocyte levels and reasoned that these may play a role in immune-related diseases. We tested 2.3 million variants for association with five lymphocyte subsets, measured in 2538 individuals from the general population, including CD4+ T cells, CD8+ T cells, CD56+ natural killer (NK) cells, and the derived measure CD4:CD8 ratio. We identified two regions of strong association. The first was located in the major histocompatibility complex (MHC), with multiple SNPs strongly associated with CD4:CD8 ratio (rs2524054, p = 2.1 × 10−28). The second region was centered within a cluster of genes from the Schlafen family and was associated with NK cell levels (rs1838149, p = 6.1 × 10−14). The MHC association with CD4:CD8 replicated convincingly (p = 1.4 × 10−9) in an independent panel of 988 individuals. Conditional analyses indicate that there are two major independent quantitative trait loci (QTL) in the MHC region that regulate CD4:CD8 ratio: one is located in the class I cluster and influences CD8 levels, whereas the second is located in the class II cluster and regulates CD4 levels. Jointly, both QTL explained 8% of the variance in CD4:CD8 ratio. The class I variants are also strongly associated with durable host control of HIV, and class II variants are associated with type-1 diabetes, suggesting that genetic variation at the MHC may predispose one to immune-related diseases partly through disregulation of T cell homeostasis.
Resumo:
The mutual influence of the components on the crystallization behaviour of polyblends, namely, isotactic polybutene-1 (PB) with low-density and high-density polyethylene (LDPE and HDPE), has been studied using techniques such as differential scanning calorimetry, infra-red spectroscopy, wide-angle X-ray diffraction, scanning electron microscopy, etc. Each component in the blend is observed to crystallize independently. There is phase separation and incompatibility, as shown from tensile properties and scanning electron microscopic observation of the fracture surface of the blend. For HDPE-PE blends (<30% HDPE), unusual form I′ crystals of PB are observed along with the usual form II.
Resumo:
Low pressure radio frequency plasma-assisted deposition of 1-isopropyl-4-methyl-1,4-cyclohexadiene thin films was investigated for different polymerization conditions. Transparent, environmentally stable and flexible, these organic films are promising candidates for organic photovoltaics (OPV) and flexible electronics applications, where they can be used as encapsulating coatings and insulating interlayers. The effect of deposition RF power on optical properties of the films was limited, with all films being optically transparent, with refractive indices in a range of 1.57–1.58 at 500 nm. The optical band gap (Eg) of ~3 eV fell into the insulating Eg region, decreasing for films fabricated at higher RF power. Independent of deposition conditions, the surfaces were smooth and defect-free, with uniformly distributed morphological features and average roughness between 0.30 nm (at 10 W) and 0.21 nm (at 75 W). Films fabricated at higher deposition power displayed enhanced resistance to delamination and wear, and improved hardness, from 0.40 GPa for 10 W to 0.58 GPa for 75 W at a load of 700 μN. From an application perspective, it is therefore possible to tune the mechanical and morphological properties of these films without compromising their optical transparency or insulating property.
Resumo:
Investigations on the wetting, solubility and chemical composition of plasma polymer thin films provide an insight into the feasibility of implementing these polymeric materials in organic electronics, particularly where wet solution processing is involved. In this study, thin films were prepared from 1-isopropyl-4-methyl-1,4-cyclohexadiene (γ-Terpinene) using radio frequency (RF) plasma polymerization. FTIR showed the polymers to be structurally dissimilar to the original monomer and highly cross-linked, where the loss of original functional groups and the degree of cross-linking increased with deposition power. The polymer surfaces were hydrocarbon-rich, with oxygen present in the form of O–H and C=O functional groups. The oxygen content decreased with deposition power, with films becoming more hydrophobic and, thus, less wettable. The advancing and receding contact angles were investigated, and the water advancing contact angle was found to increase from 63.14° to 73.53° for thin films prepared with an RF power of 10 W to 75 W. The wetting envelopes for the surfaces were constructed to enable the prediction of the surfaces’ wettability for other solvents. The effect of roughness on the wetting behaviour of the films was insignificant. The polymers were determined to resist solubilization in solvents commonly used in the deposition of organic semiconducting layers, including chloroform and chlorobenzene, with higher stability observed in films fabricated at higher RF power.
Resumo:
Field studies were conducted over 5 years on two dairy farms in southern Queensland to evaluate the impacts of zero-tillage, nitrogen (N) fertiliser and legumes on a winter-dominant forage system based on raingrown oats. Oats was able to be successfully established using zero-tillage methods, with no yield penalties and potential benefits in stubble retention over the summer fallow. N fertiliser, applied at above industry-standard rates (140 vs. 55 kg/ha.crop) in the first 3 years, increased forage N concentration significantly and had residual effects on soil nitrate-N at both sites. At one site, crop yield was increased by 10 kg DM/ha. kg fertiliser N applied above industry-standard rates. The difference between sites in fertiliser response reflected contrasting soil and fertiliser history. There was no evidence that modifications to oats cropping practices (zero-tillage and increased N fertiliser) increased surface soil organic carbon (0-10 cm) in the time frame of the present study. When oats was substituted with annual legumes, there were benefits in improved forage N content of the oat crop immediately following, but legume yield was significantly inferior to oats. In contrast, the perennial legume Medicago sativa was competitive in biomass production and forage quality with oats at both sites and increased soil nitrate-N levels following termination. However, its contribution to winter forage was low at 10% of total production, compared with 40% for oats, and soil water reserves were significantly reduced at one site, which had an impact on the following oat production. The study demonstrated that productive grazed oat crops can be grown using zero tillage and that increased N fertiliser is more consistent in its effect on N concentration than on forage yield. A lucerne ley provides a strategy for raising soil nitrate-N concentration and increasing overall forage productivity, although winter forage production is reduced.
Resumo:
Poly(linalool) thin films were fabricated using RF plasma polymerisation. All films were found to be smooth, defect-free surfaces with average roughness of 0.44 nm. The FTIR analysis of the polymer showed a notable reduction in –OH moiety and complete dissociation of C=C unsaturation compared to the monomer, and presence of a ketone band absent from the spectrum of the monomer. Poly(linalool) were characterised by chain branching and a large quantity of short polymer chains. Films were optically transparent, with refractive index and extinction coefficient of 1.55 and 0.001 (at 500 nm) respectively, indicating a potential application as an encapsulating (protective) coating for circuit boards. The optical band gap was calculated to be 2.82 eV, which is in the semiconducting energy gap region.
Resumo:
Anthocyanins are located within the vacuole of plant cells, and are released following cell rupture during eating or processing at which time they first come into contact with the plant cell wall. The extent of anthocyanin-cell wall interaction was investigated by monitoring the rate of anthocyanin depletion in the presence of pure cellulose or cellulose-pectin composites as cell wall models. It was found that anthocyanins interact with both cellulose and pectin over a two-stage process with initially (mins-hours) 13 similar to 18% of anthocyanins binding to cellulose or cellulose/pectincomposites. With prolonged exposure (days-weeks), a gradual increase in anthocyanin binding occurs, possibly due to anthocyanins stacking on top of a base layer. Binding of acylated and non-acylated anthocyanins followed a similar pattern with slightly more (5-10%) binding of the acylated forms. Composites with the highest pectin content had the greatest anthocyanin binding suggesting the existence of both ionic interactions (with pectin) and hydrophobic interactions (with cellulose) of anthocyanin with plant cell walls.
Resumo:
"Drucksaal 1"
Resumo:
BACKGROUND: Familial isolated hyperparathyroidism (FIHP) is an autosomal dominantly inherited form of primary hyperparathyroidism. Although comprising only about 1% of cases of primary hyperparathyroidism, identification and functional analysis of a causative gene for FIHP is likely to advance our understanding of parathyroid physiology and pathophysiology. METHODS: A genome-wide screen of DNA from seven pedigrees with FIHP was undertaken in order to identify a region of genetic linkage with the disorder. RESULTS: Multipoint linkage analysis identified a region of suggestive linkage (LOD score 2.68) on chromosome 2. Fine mapping with the addition of three other families revealed significant linkage adjacent to D2S2368 (maximum multipoint LOD score 3.43). Recombination events defined a 1.7 Mb region of linkage between D2S2368 and D2S358 in nine pedigrees. Sequencing of the two most likely candidate genes in this region, however, did not identify a gene for FIHP. CONCLUSIONS: We conclude that a causative gene for FIHP lies within this interval on chromosome 2. This is a major step towards eventual precise identification of a gene for FIHP, likely to be a key component in the genetic regulation of calcium homeostasis.
Resumo:
C17H19N302, monoclinic, P21, a = 5.382 (1), b = 17.534(4), c = 8.198(1)/L ,8 = 100.46(1) °, Z= 2, d,, = 1.323, dc= 1.299 Mg m-3, F(000) = 316, /~(Cu .Ka) = 0.618 mm -1. R = 0.052 for 1284 significant reflections. The proline-containing cispeptide unit which forms part of a six-membered ring deviates from perfect planarity. The torsion angle about the peptide bond is 3.0 (5) ° and the peptide bond length is 1.313 (5)A. The conformation of the proline ring is Cs-Cf~-endo. The crystal structure is stabilized by C-H... O interactions.
Resumo:
The stability of the steady-state solutions of mode-locking of cw lasers by a fast saturable absorber is imvestigated. It is shown that the solutions are stable if the condition (Ps/Pa) = (2/3) (P0Pa) is satisfied, where (Ps/Pa) is the steady-state la ser power, (P0/Pa) is the power at mode-locking threshold, and Pa is the saturated power of the absorber.
Resumo:
Empirical potential energy calculations have been carried out to determine the preferred conformations of some oligosaccharides having the trimannosidic core structure (Man3GlcNAc2) and which interact with concanavalin A. In the minimum energy conformations for the trimannosidic core the mannose residue on the Man α(1–6) arm comes close to one of the N-acetylglucosamine residues of the core. The addition of N-acetylglucosamine residues to the terminal mannose residues does not alter the preferred conformation of the trimannosidic core although it alters the relative preference of some of the higher energy conformations. The minimum energy conformation broadly agrees with available X-ray data. The presence of a bisecting N-acetylglucosamine residue on the middle mannose does not push the trimannosidic core to any new conformation but it does alter the relative preference for a particular conformation.
Resumo:
Knoevenagel condensation of 2-acylcyclohexanones or 2-ethoxycarbonylcyclohexanone with either cyanoacetamide or malononitrile followed by silver salt alkylation gave the 5,6,7,8-tetrahydroisoquinolines (3a–i). Chromic acid oxidation of the 5,6,7,8-tetrahydroisoquinolines (3a–i) to the corresponding tetralones (4a–i) followed by sodium borohydride reduction and p-toluenesulphonic acid-catalysed dehydration of the resulting alcohols (5a–i) gave the 5,6-dihydroisoquinolines (6a–i). Reaction of 5,6-dihydroisoquinolines (6a–g) with potassium amide in liquid ammonia gave a mixture of the 1,3-dihydroisoquinolines (7a–g) and the isoquinolines (8a–g). The C-1 unsubstituted 1,2-dihydroisoquinoline (7c) was found to be very unstable. In the case of the 5,6-dihydroisoquinolines (6h and 6i), reaction of potassium amide in liquid ammonia resulted in a mixture of 1-aminoisoquinoline (9) and the isoquinolines (8h and 8i). All the above compounds have been characterised by spectral data. A probable pathway for the formation of the 1,2-dihydroisoquinolines (7a–g) and the isoquinolines (8a–i) is suggested.