939 resultados para ADSORBED CELLULASE
Resumo:
Certain inorganic nickel compounds such as crystalline NiS and Ni(,3)S(,2) are potent inducers of carcinogenesis and in vitro cell transformation, while several closely-related compounds such as amorphous NiS are essentially devoid of genotoxic activity. The phenomenon of selectivity of phagocytosis among such particulate nickel compounds has been hypothesized to account for their widely varying toxicological potency, yet the determinants of this selectivity have not been well characterized. Extracellular medium composition, particle dissolution, and particle surface charge were examined as potential determinants of selective phagocytosis for the carcinogenic crystalline and noncarcinogenic amorphous modifications of NiS. Selectivity and avidity of uptake of crystalline NiS by CHO cells was not dependent upon serum: phagocytosis of crystalline, but not amorphous NiS proceeded readily in a minimal salts/glucose medium at 37(DEGREES)C. The evolution of phagocytosis-inhibiting Ni(II) from the surface of amorphous NiS particles did not demonstrably contribute to the lower uptake of these noncarcinogenic particles despite their somewhat greater dissolution rate than the readily phagocytosed crystalline NiS particles. Significant differences in surface charge were noted between crystalline and amorphous NiS, the former being more negative in charge in distilled water suspension. Exposure of amorphous NiS particles to the vigorously reducing environment of a LiAlH(,4) solution under an inert atmosphere resulted in the particles' acquisition of a more negative surface charge. Amorphous NiS particles thus treated were phagocytosed by CHO cells to an extent similar to that of untreated crystalline NiS particles and likewise were shown to induce morphological transformation of primary Syrian hamster embryo cells with a similar potency. The potentiation of uptake characteristic of LiAlH(,4)-treated amorphous NiS was lost gradually upon storage of particles in ambient oxygenated atmosphere and was lost rapidly by apparent particle surface oxidation in aerated distilled water suspensions aged for up to 7 days. Concomitant with this loss of uptake there occurred a loss of negative surface charge. These results suggest the predominant role of particle surface charge rather than adsorbed serum components or particle dissolution as a determinant of selective phagocytosis among particulate nickel compounds. ^
Resumo:
I have developed a novel approach to test for toxic organic substances adsorbed onto ultra fine particulate particles present in the ambient air in Northeast Houston, Texas. These particles are predominantly carbon soot with an aerodynamic diameter (AD) of <2.5 μm. If present in the ambient air, many of the organic substances will be absorbed to the surface of the particles (which act just like a charcoal air filter), and may be adducted into the respiratory system. Once imbedded into the lungs these particles may release the adsorbed toxic organic substances with serious health consequences. I used a Airmetrics portable Minivol air sampler time drawing the ambient air through collection filters samples from 6 separate sites in Northeast Houston, an area known for high ambient PM 2.5 released from chemical plants and other sources (e.g. vehicle emissions).(1) In practice, the mass of the collected particles were much less than the mass of the filters. My technique was designed to release the adsorbed organic substances on the fine carbon particles by heating the filter samples that included the PM 2.5 particles prior to identification by gas chromatography/mass spectrometry (GCMS). The results showed negligible amounts of target chemicals from the collection filters. However, the filters alone released organic substances and GCMS could not distinguish between the organic substances released from the soot particles from those released from the heated filter fabric. However, an efficacy tests of my method using two wax burning candles that released soot revealed high levels of benzene. This suggests that my method has the potential to reveal the organic substances adsorbed onto the PM 2.5 for analysis. In order to achieve this goal, I must refine the particle collection process which would be independent of the filters; the filters upon heating also release organic substances obscuring the contribution from the soot particles. To obtain pure soot particles I will have to filter more air so that the soot particles can be shaken off the filters and then analyzed by my new technique. ^
Resumo:
Diarrhea remains a significant cause of worldwide morbidity and mortality. Over 4 million children die of diarrhea annually. Although antibiotics can be used as prophylaxis or for treatment of diarrhea, concern remains over antibiotic resistance. Rifaximin is a semi-synthetic rifamycin derivative that can be used to treat symptoms of infectious diarrhea, inflammatory bowel syndrome, bacterial overgrowth of the small bowel, pouchitis, and fulminant ulcerative colitis. Rifaximin is of particular interest because it is poorly adsorbed in the intestines, shows no indication of inducing bacterial resistance, and has minimal effect on intestinal flora. In order to better understand how rifaximin functions, we sought to compare the protein expression profile of cells pretreated with rifaximin, as compared to cells treated with acetone, rifamycin (control antibiotic), or media (untreated). 2-D gel electrophoresis identified 38 protein spots that were up- or down-regulated by over 2-fold in rifaximin treated cells compared to controls. 16 of these spots were down-regulated, including keratin, annexin A5, intestinal-type alkaline phosphatase, histone h4, and histone-binding protein RbbP4. 22 spots were up-regulated, including heat shock protein HSP 90 alpha, alkaline phosphatase, and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. A better understanding of the functionality of rifaximin will identify additional potential uses for rifaximin and determine for whom the drug is best suited. ^
Resumo:
This the tenth in a series of symposia devoted to talks by students on their biochemical engineering research. The first, third, fifth, and ninth were at Kansas State University in Manhattan, the second and fourth were at the University of Nebraska–Lincoln, the sixth was in Kansas City in conjunction with the 81st American Institute of Chemical Engineers National Meeting, the seventh was at Iowa State University in Ames, and the eighth was held at the University of Missouri–Columbia. Contents"Combined Autohydrolysis-Organosolv Pretreatment of Lignocellulosic Materials," Robert A. Lewis, Colorado State University "An Investigation of Cellulase Activity Assays," Minhhuong Nguyen, University of Missouri–Columbia "Action Pattern of a Xylobiohydrolase from Aspergillus niger," Mary M. Frederick, Iowa State University "Estimation of Heats of Combustion of Biomass from Elemental Analysis Using Available Electron Concepts," Snehal A. Patel, Kansas State University "Design of a Wheat Straw to Ethanol Conversion Facility," Michael M. Meagher, Colorado State University "Effects of Salt, Heat, and Physical Form on the Fermentation of Bananas," Carl Drewel, University of Missouri–Columbia "Gas Hold-up in the Downflow Section of a Split Cylinder Airlift Column," Vasanti Deshpande, Kansas State University "Measurement of Michaelis Constants for Soluble and Immobilized Glucoamylase," Robert A. Lesch, Iowa State University "Kinetics of Alkaline Oxidation and Degradation of Sugars," Alfred R. Fratzke, Iowa State University "Stability of Cereal Protein During Microbial Growth on Grain Dust," Bamidele O. Solomon, Kansas State University
Resumo:
The symposium reported here was the thirteenth of a series devoted to talks by students on their biochemical engineering research. The first, third, fifth, ninth, and twelfth were at Kansas State University, the second and fourth were at the University of Nebraska–Lincoln, the sixth was in Kansas City and was hosted by Iowa State University, the seventh and tenth were at Iowa State, and the eighth and eleventh were at the University of Missouri–Columbia and Colorado State University, respectively. All symposia have been followed by proceedings edited by faculty of the host institution. Because final publication usually takes place elsewhere, papers here are brief, and often cover research in progress. ContentSequential Utilization of Mixed Sugars by Clostridium acetobutylicum, B. Hong, N. H. Choi, and L. T. Fan, Kansas State University The Effects of Dilution Rate on the Kinetics. of Anaerobic Acidogenesis, C. J. Huang, Colorado State University Ethanol Production by Zymomonas mobilis in Anaerobic Glucose-Limited Culture: A Yield Study, Mehmet D. Oner, Kansas State University Hydrolysis of Cellulosics by Enterobacteria, Michael R. Sierks, Iowa State University The Cellulase System of Chaetomium cellulolyticum, Nikhil Mehta, Colorado State University DNA Measurement as a Tool for Estimating Biomass Concentration in the Presence of Interfering Solids, Bamidele 0. Solomon, Kansas State University The Effect of Cellulose Crystallinity on Enzymatic Hydrolysis, Maria S. Bertran, Colorado State University High Performance Liquid Chromatography of Di- and Trisaccharides, Michael M. Meagher, Iowa State University Dynamics of Bubble Size .Distributions in Air-Lift Fermentors, c. H. Lee and Snehal A. Patel, Kansas State University A Thermal Coagulation Study of Alfalfa Leaf Proteins by Differential Scanning Calorimeter, Khalif Ahmed and Bruce Dale, Colorado State University Thermodynamic Efficiency of Photoautotrophic Growth, Hyeon Y. Lee, Kansas State University
Resumo:
The Annual Biochemical Engineering Symposium series is devoted to presentations by students on their research topics. The fourteenth event, held in 1984, was organized at the University of Missouri–Columbia. It was attended by the biochemical engineering faculty and the students from Colorado State University, Iowa State University, Kansas State University, University of Missouri–Columbia, University of Missouri–Rolla and Washington University, St. Louis. Contents"Estimation of Product Formation Kinetics and Microbial Yield Parameters for Anaerobic Organic Acid and Solvent Production," M.D. Oner, Kansas State University "Characterization of Soy Protein Texturization in a Complex Bioreactor," J.L. Ibave, Colorado State University "Acid and Solvent Fermentations Using Mixed Cultures," D. Stevens, University of Missouri–Columbia "Preliminary Process Design for Ethanol from Sweet Sorghum Ensilage Feedstock," Keith D. Lange, Colorado State University "Lamella Settlers in Ethanol Fermentation," Yong Jayanata, University of Missouri–Columbia "Bubble Size Distribution in the Down Flow Section of an Air-Lift Column," Snehal A. Patel and C.H. Lee, Kansas State University "The Sensitivity of Plant Cells to Shear Stress," Morris Z. Resenberg and Eric H. Dunlap, Washington University, St. Louis "Estimation of Growth Yield Parameters Associated with Microbial Growth," Hyeon Y. Lee, Kansas State University "Capillary Gas Chromatography of Trimethylsilylated Trisaccharides," Etienne J.M. Selosse, Iowa State University "Subsite Mapping of an Endo-Xylanase Labeled Xylooligo-saccharides," Bernard Y. Tao, Iowa State University "Cellulase Enzyme Recycle," Kate M.V. Baptie, Colorado State University "Non-Homogeneous Poisson Renewal Reward Process for Modelling Enzymatic Hydrolysis of Cellulose," M.M. Gharpuray and L.T. Fan, Kansas State University
Resumo:
Palladium, platinum, and gold were analyzed for 20 interstitial water samples from Leg 125. No Pd or Pt was detected in fluids from serpentinite muds from Conical Seamount in the Mariana forearc, indicating that low-temperature seawater-peridotite interaction does not mobilize these elements into the serpentinizing fluids to levels above 0.10 parts per billion (ppb) in solution. However, Au may be mobilized in high pH solutions. In contrast, fluids from vitric-rich clays on the flanks of the Torishima Seamount in the Izu-Bonin forearc have Pd values of between 4.0 and 11.8 nmol/L, Pt values between 2.3 and 5.0 nmol/L and Au values between 126.9 and 1116.9 pmol/L. The precious metals are mobilized, and possibly adsorbed onto clay mineral surfaces, during diagenesis and burial of the volcanic-rich clays. Desorption during squeezing of the sediments may produce the enhanced precious metal concentrations in the analyzed fluids. The metals are mobilized in the fluids probably as neutral hydroxide, bisulfide, and ammonia complexes. Pt/Pd ratios are between 0.42 and 2.33, which is much lower than many of the potential sources for Pt and Pd but is consistent with the greater solubility of Pd compared with Pt in most natural low-temperature fluids.
Resumo:
The relative effects of paleoceanographic and paleogeographic variations, sediment lithology, and diagenetic processes on the final preserved chemistry of Japan Sea sediments are evaluated by investigating the rare earth element (REE), major element, and trace element concentrations in 59 squeeze-cake whole-round and 27 physical-property sample residues from Sites 794, 795, and 797, cored during ODP Leg 127. The most important variation in sedimentary chemical composition is the increase in SiO2 concentration through the Pliocene diatomaceous sequences, which dilutes most other major and trace element components by various degrees. This biogenic input is largest at Site 794 (Yamato Basin), moderately developed at Site 797 (Yamato Basin), and of only minor importance at Site 795 (Japan Basin), potentially reflecting basinal contrasts in productivity with the Yamato Basin recording greater biogenic input than the Japan Basin and with the easternmost sequence of Site 794 lying beneath the most productive waters. There are few systematic changes in solid-phase chemistry resulting from the opal-A/opal-CT or opal-CT/quartz silica phase transformations. Most major and trace element concentrations are controlled by the aluminosilicate fraction of the sediment, although the effects of diagenetic silica phases and manganese carbonates are of localized importance. REE total abundances (Sum REE) in the Japan Sea are strongly dependent upon the paleoceanographic position of a given site with respect to terrigenous and biogenic sources. REE concentrations at Site 794 overall correspond well to aluminosilicate chemical indices and are strongly diluted by SiO2 within the upper Miocene-Pliocene diatomaceous sequence. Eu/Eu* values at Site 794 reach a maximum through the diatomaceous interval as well, most likely suggesting an association of Eu/Eu* with the siliceous component, or reflecting slight incorporation of a detrital feldspar phase. SumREE at Site 795 also is affiliated strongly with aluminosilicate phases and yet is diluted only slightly by siliceous input. At Site 797, SumREE is not as clearly associated with the aluminosilicate fraction, is correlated moderately to siliceous input, and may be sporadically influenced by detrital heavy minerals originating from the nearby rifted continental fragment composing the Yamato Rise. Ce/Ce* profiles at all three sites increase essentially monotonically with depth and record progressive diagenetic LREE fractionation. The observed Ce/Ce* increases are not responding to changes in the paleoceanographic oxygenation state of the overlying water, as there is no independent evidence to suggest the proper oceanographic conditions. Ce/Ce* correlates slightly better with depth than with age at the two Yamato Basin sites. The downhole increase in Ce/Ce* at Sites 794 and 797 is a passive response to the diagenetic transfer of LREE (except Ce) from sediment to interstitial water. At Site 795, the overall lack of correlation between Ce/Ce* and Lan/Ybn suggests that other processes mask the diagenetic behavior of all LREEs. First-order calculations of the Ce budget in Japan Sea waters and sediment indicate that ~20% of the excess Ce adsorbed by settling particles is recycled within the water column and that an additional ~38% is recycled at or near the seafloor. Thus, because the remaining excess Ce is only ~10% of the total Ce, there is not a large source of Ce to the deeply buried sediment, further suggesting that the downhole increase in Ce/Ce* is a passive response to diagenetic behavior of the other LREEs. The REE chemistry of Japan Sea sediment therefore predicts successive downhole addition of LREEs to deeply buried interstitial waters.
Resumo:
Resumen: Se planificaron las experiencias con el objeto de analizar el comportamiento del catalizador en la columna metálica de mayor diámetro. Se modificaron las masas usadas para verificar la eficiencia de retención respecto de la masa. Se realizaron ciclos de adsorción, desorción y readsorción sobre una misma muestra para determinar variaciones en la eficiencia del catalizador. En otra fase, en colaboración con el Dr. V. A. Ranea y el Prof. E. E. Mola (INIFTA, UNLP), se desarrolló el estudio teórico de la adsorción de moléculas de SO2, CH4, CO2, O2 y CO sobre Cr2O3(0001) mediante Teoría del Funcional Densidad (programa VASP, Vienna Ab-initio Simulation Package), y el estudio de la cinética de la reacción entre CH4, SO2 y el O2 junto con la presencia de especies sulfito y sulfato. Este estudio permitió hallar los sitios preferenciales de adsorción de Sº y la posible competencia con SO2 experimentalmente y por cálculos teóricos. Dentro del marco de la presente línea de investigación, la Ing. Sabrina Hernández Guiance continúa realizando experiencias en el marco del proyecto conjunto con el INIFTA, las cuales forman parte del desarrollo de su tesis doctoral. Experimentalmente, se observa que la eficiencia de adsorción del catalizador respecto al SO2 es cercana al 100%. Se observa un pico de termodesorción a 1120 K. Luego, se estudió la oxidación de CH4 con SO2. Se observa que hay producción de CO2 desde temperatura inicial, seguida de un aumento significativo en la formación de CO2 hasta 330-340 K. Luego, la producción de CO2 se mantiene aproximadamente constante. Mediante el empleo de la ecuación de Arrhenius y resultados experimentales, se obtuvo la energía de activación de la reacción global, de 7 Kcal/mol. Mediante estudios teóricos, se determinó que la energía de quimisorción del SO2 sobre el Cr2O3 es de -3.09 eV para la configuración más estable, una energía de adsorción de O2 en estado disociativo de -1.567 eV, una energía para CH4 sobre O2 adsorbido previamente de -0.335 eV, y - 0.812 eV para la configuración más estable de CO2 sobre el sustrato.
Resumo:
The effect of Bokashi (B, a fermented compost), slow-release fertilizers (SRFs) and their combined application on mycorrhizal colonization (MC), soil invertase, cellulase, acid (AcP) and alkaline (AlP) phosphatases activities and maize (Zea mays L.) yield was investigated in terrace (TS) and valley (VS) soils in Oaxaca, Mexico. A complete randomized design, seven fertilizer treatments and four replications were used: unamended control (C); conventional fertilization (90-46-00 NPK) (CF); B; SRF1 (Multigro 6®, 21-14-10 NPK); SRF2 (Multigro 3®, 24-05-14 NPK); B+SRF1; B+SRF2. Highest root colonization percentage: CF in VS, and SRF2 in TS. Highest extraradical mycelium length: B, B+SRF1, CF in VS, and B+SRF1 in TS. In both soils, B increased the spore number. Highest AcP activity: B, SRF2 in VS, and B+SRF1, B+SRF2 in TS. Highest AlP activity: B+SRF1, CF in VS, and C in TS. Highest invertase activity: B+SRF1, SRF2, CF in VS, and B in TS. Grain yield only increased with B in VS. The significant interaction soil type × fertilizer treatment for the majority of the biological soil properties analyzed suggests that MC and soil enzyme activity response to fertilization was influenced by soil type. Bokashi, alone or combined with SRFs improves biological soil fertility in maize fields.
Resumo:
C2-C8 hydrocarbon concentrations (about 35 compounds identified, including saturated, aromatic, and olefinic compounds) from 38 shipboard sealed, deep-frozen core samples of Deep Sea Drilling Project Sites 585 (East Mariana Basin) and 586 (Ontong-Java Plateau) were determined by a gas stripping-thermovaporization method. Total concentrations, which represent the hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces of the sediment, vary from 20 to 630 ng/g of rock at Site 585 (sub-bottom depth range 332-868 m). Likewise, organic-carbon normalized yields range from 3*10**4 to 9*10**5 ng/g Corg, indicating that the organic matter is still in the initial, diagenetic evolutionary stage. The highest value (based on both rock weight and organic carbon) is measured in an extremely organic-carbon-poor sample of Lithologic Subunit VB (Core 585-30). In this unit (504-550 m) several samples with elevated organic-carbon contents and favorable kerogen quality including two thin "black-shale" layers deposited at the Cenomanian/Turonian boundary (not sampled for this study) were encountered. We conclude from a detailed comparison of light hydrocarbon compositions that the Core 585-30 sample is enriched in hydrocarbons of the C2-C8 molecular range, particularly in gas compounds, which probably migrated from nearby black-shale source layers. C2-C8 hydrocarbon yields in Site 586 samples (sub-bottom depth range 27-298 m) did not exceed 118 ng/g of dry sediment weight (average 56 ng/g), indicating the immaturity of these samples.
Resumo:
During the International Indian Ocean Expedition (1964/65) sediment cores were taken on six profiles off the western coast of the Indian Subcontinent. These profiles run approximately perpendicular to the coast, from the deep-sea over the continental slope to the continental shelf. Additional samples and cores were taken in a dense pattern in front of the delta of the Indus River. This pattern of sampling covered not only marine sediments, but also river and beach sediments in Pakistan. The marine samples were obtained with piston, gravity and box corers and by a Van Veen grab sampler. The longest piston core is about 5 meters long. 1. Distribution of the elements on the sediment surface The area of maximal carbonate values (aprox. 80-100% CaCO3) essentially coincides with the continental shelf. The highest Sr values were observed largely within this area, but only in the vicinity of the Gulf of Cambay. Mainly the aragonitic coprolites are responsible for those high Sr contents. The Mg contents of the carbonates are comparatively low; surprisingly enough the highest Mg concentrations were also measured in the coprolites. The maximum contents of organic matter (Core) were found along the upper part of the continental slope. They coincide with the highest porosity and water content of the sediments. Frequently the decomposition of organic matter by oxydation is responsible for the measured Corg contents. On the other side the quantity of originally deposited organic material is less important in most cases. The enrichment of the "bauxitophile" elements Fe, Ti, Cr and V in the carbonate- and quartz-free portions of the sediments is essentially due to the influence of coarse terrigenous detritus. For the elements Mn, Ni and Cu (in per cent of the carbonateand quartz-free sediment) a strong enrichment was observed in the deep-sea realm. The strong increase in Mn toward the deep-sea is explained by authigenesis of Mn-Fe-concretions. Mn-nodules form only under oxydizing conditions which obviously are possible only at very low rates of deposition. The Mg, B and, probably also Mn contents in the clay minerals increase with increasing distance from the continent. This can be explained by the higher adsorption of those elements from sea water because of increasing duration of the clay mineral transport. The comparison of median contents of some elements in our deep-sea samples with deep-sea sediments described by TUREKIAN & WEDEPOHL (1961) shows that clear differences in concentration exist only in the case of "bauxitophile" elements Cr and Be. The Cr and Be contents show a clear increase in the Indian Ocean deep-sea samples compared to those described by TUREKIAn & WEDEPOHL (1961) which can obviously be attributed to the enrichment in the lateritic and bauxitic parent rocks. The different behaviour of the elements Fe, Ti and Mn during decomposition of the source rocks, transport to the sea and during oxydizing and reducing conditions in the marine environment can be illustrated by Ti02/Fe and MnO/Fe ratios. The different compositions of the sediments off the Indus Delta and those of the remaining part of the area investigated are characterized by a different distribution of the elements Mn and Ti. 2. Chemical inhomogenities in the sediments Most longer cores show 3 intervals defined by chemical and sedimentological differences. The top-most interval is coarse-grained, the intermedial interval is fine grained and the lower one again somewhat coarser. At the same time it is possible to observe differences from interval to interval in the organogenic and detrital constituents. During the formation of the middle interval different conditions of sedimentation from those active during the previous and subsequent periods have obviously prevailed. Looking more closely at the organogenic constituents it is remarkable that during the formation of the finer interval conditions of a more intensive oxydation have prevailed that was the case before and after: Core decreases, whereas P shows a relative increase. This may be explained by slower sedimentation rate or by a vertical migration of the oxygen rich zone of the sea-water. The modifications of the elements from minerals in detrital portion of the sediments support an explanation ascribing this fact to modifications of the conditions of denudation and transportation which can come about through a climatic change or through tectonic causes. The paleontological investigations have shown (ZOBEL, in press) that in some of the cores the middle stratum of fine sedimentation represents optimal conditions for organic life. This fact suggests also oxydizing conditions during the sedimentation of this interval. In addition to the depositional stratification an oxydation zone characterized by Mn-enrichment can be recognized. The thickness of the oxidation zone decreases towards the coast and thins out along the middle part of the continental slope. At those places, where the oxydation zone is extremely thin, enrichment of Mn has its maximum. This phenomenon can probably be attributed to the migration of Mn taking place in its dissociated form within the sediment under reducing conditions. On the other side this Mn-migration in the sediment does not take place in the deep-sea, where oxydizing conditions prevail. 3. Interstitial waters in the sediments Already at very small core depths, the interstitial waters have undergone a distinct modification compared with the overlying sea water. This distinct modification applies both to total salinity and to the individual ions. As to the beginning of diagenesis the following conclusions can be drawn: a) A strong K-increase occurs already at an early stage. It may be attributable to a diffusion barrier or to an exchange of Mg-ions on the clays. Part of this increase may also originate from the decomposition of K-containing silicates (mica and feldspars). A K-decrease owing to the formation of illite (WEAVER 1967), however, occurs only at much greater sediment depth. b) Because of an organic protective coating, the dissolution of carbonate is delayed in recent organogenic carbonates. At the same time some Ca is probably being adsorbed on clay minerals. Consequently the Ca-content of the interstitial water drops below the Ca-content of the sea water. c) Already at an early stage the Mg adsorption on the clays is completed. The adsorbed Mg is later available for diagenetic mineral formations and transformations.
Resumo:
A series of C2-C8 hydrocarbons (including saturated, aromatic, and olefinic compounds) from deep-frozen core samples taken during DSDP Leg 75 (Holes 530A and 532) were analyzed by a combined hydrogen-stripping/thermovaporization method. Concentrations representing both hydrocarbons dissolved in the pore water and adsorbed on the mineral surfaces vary in Hole 530A from about 10 to 15,000 ng/g of dry sediment weight depending on the lithology (organic-carbon-lean calcareous oozes versus "black shales"). Likewise, the organic-carbon-normalized C2-C8 hydrocarbon concentrations vary from 3,500 to 93,100 ng/g Corg, reflecting drastic differences in the hydrogen contents and hence the hydrocarbon potential of the kerogens. The highest concentrations measured of nearly 10**5 ng/g Corg are about two orders of magnitude below those usually encountered in Type-II kerogen-bearing source beds in the main phase of petroleum generation. Therefore, it was concluded that Hole 530A sediments, even at 1100 m depth, are in an early stage of evolution. The corresponding data from Hole 532 indicated lower amounts (3,000-9,000 ng/g Corg), which is in accordance with the shallow burial depth and immaturity of these Pliocene/late Miocene sediments. Significant changes in the light hydrocarbon composition with depth were attributed either to changes in kerogen type or to maturity related effects. Redistribution pheonomena, possibly the result of diffusion, were recognized only sporadically in Hole 530A, where several organic-carbon lean samples were enriched by migrated gaseous hydrocarbons. The core samples from Hole 530A were found to be severely contaminated by large quantities of acetone, which is routinely used as a solvent during sampling procedures on board Glomar Challenger.
Resumo:
We examined the flux of Al to sediment accumulating beneath the zone of elevated productivity in the central equatorial Pacific Ocean, along a surface sediment transect at 135°W as well as downcore for a 650 kyr record at 1.3°N, 133.6°W. Across the surface transect, a pronounced, broadly equatorially symmetric increase in Al accumulation is observed, relative to Ti, with Al/Ti ratios reaching values 3-4 times that of potential detrital sources. The profile parallels biogenic accumulation and the modeled flux of particulate 234Th, suggesting rapid and preferential adsorptive removal of Al from seawater by settling biogenic particles. Normative calculations confirm that most Al is unsupported by the terrigenous fraction. The observed distributions are consistent with previous observations of the relative and absolute behavior of Al and Ti in seawater, and we can construct a reasonable mass balance between the amount of seawater-sourced Al retained in the sediment and the amount of seawater Al available in the overlying column. The close tie between Al/Ti and biogenic accumulation (as opposed to concentration) emphasizes that biogenic sedimentary Al/Ti responds to removal-transport phenomena and not bulk sediment composition. Thus, in these sediments dominated by the biogenic component, the bulk Al/Ti ratio reflects biogenic particle flux, and by extension, productivity of the overlying seawater. The downcore profile of Al/Ti at 1.3°N displays marked increases during glacial episodes, similar to that observed across the surface transect, from a background value near Al/Ti of average upper crust. The excursions in Al/Ti are stratigraphically coincident with maxima in both bulk and CaCO3 accumulation and the excess Al appears to not be preferentially affiliated with opaline or organic phases. Consistent with the similar behavioral removal of Al and 234Th, the latter of which responds to the total particle flux, the Al flux reflects carbonate accumulation only because carbonate comprises the dominant flux in these particular deposits. These results collectively indicate that (1) Al in biogenic sediment and settling biogenic particles is strongly affected by a component adsorbed from seawater. Therefore, the common tenet that Al is dominantly associated with terrestrial particulate matter, and the subsequent use of Al distributions to calculate the abundance and flux of terrestrial material in settling particles and sediment, needs to be reevaluated. (2) The Al/Ti ratio in biogenic sediment can be used to trace the productivity of the overlying water, providing a powerful new paleochemical tool to investigate oceanic response to climatic variation. (3) The close correlation between the Al/Ti productivity signal and carbonate maxima downcore at 1.3°N suggests that the sedimentary carbonate maxima in the central equatorial Pacific Ocean record increased productivity during glacial episodes.
Resumo:
Sediments from Holes 994C, 995A, 997A, and 997B have been investigated for "combined" gases (adsorbed gas and that portion of free gas that has not escaped from the pore volume during core recovery and sample collection and storage), solvent-extractable organic compounds, and microscopically identifiable organic matter. The soluble materials mainly consist of polar compounds. The saturated hydrocarbons are dominated by n-alkanes with a pronounced odd-even predominance pattern that is derived from higher plant remains. Unsaturated triterpenoids and 17ß, 21ß-pentacyclic triterpenoids are characteristic for a low maturity stage of the organic matter. The low maturity is confirmed by vitrinite reflectance values of 0.3%. The proportion of terrestrial remains (vitrinite) increases with sub-bottom depth. Within the liptinite fraction, marine algae plays a major role in the sections below 180 mbsf, whereas above this depth sporinites and pollen from conifers are dominant. These facies changes are confirmed by the downhole variations of isoprenoid and triterpenoid ratios in the soluble organic matter. The combined gases contain methane, ethane, and propane, which is a mixture of microbial methane and thermal hydrocarbon gases. The variations in the gas ratios C1/(C2+C3) reflect the depth range of the hydrate stability zone. The carbon isotopic contents of ethane and propane indicate an origin from marine organic matter that is in the maturity stage of the oil window.