925 resultados para 700103 Information processing services


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an approach for a sparse representation for Gaussian Process (GP) models in order to overcome the limitations of GPs caused by large data sets. The method is based on a combination of a Bayesian online algorithm together with a sequential construction of a relevant subsample of the data which fully specifies the prediction of the model. Experimental results on toy examples and large real-world datasets indicate the efficiency of the approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a simple convexity lemma, we develop bounds for different types of Bayesian prediction errors for regression with Gaussian processes. The basic bounds are formulated for a fixed training set. Simpler expressions are obtained for sampling from an input distribution which equals the weight function of the covariance kernel, yielding asymptotically tight results. The results are compared with numerical experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss the Application of TAP mean field methods known from Statistical Mechanics of disordered systems to Bayesian classification with Gaussian processes. In contrast to previous applications, no knowledge about the distribution of inputs is needed. Simulation results for the Sonar data set are given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply methods of Statistical Mechanics to study the generalization performance of Support vector Machines in large data spaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We employ the methods presented in the previous chapter for decoding corrupted codewords, encoded using sparse parity check error correcting codes. We show the similarity between the equations derived from the TAP approach and those obtained from belief propagation, and examine their performance as practical decoding methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyse Gallager codes by employing a simple mean-field approximation that distorts the model geometry and preserves important interactions between sites. The method naturally recovers the probability propagation decoding algorithm as a minimization of a proper free-energy. We find a thermodynamical phase transition that coincides with information theoretical upper-bounds and explain the practical code performance in terms of the free-energy landscape.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We combine the replica approach from statistical physics with a variational approach to analyze learning curves analytically. We apply the method to Gaussian process regression. As a main result we derive approximative relations between empirical error measures, the generalization error and the posterior variance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of resource allocation in sparse graphs with real variables is studied using methods of statistical physics. An efficient distributed algorithm is devised on the basis of insight gained from the analysis and is examined using numerical simulations, showing excellent performance and full agreement with the theoretical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the problem of illusory or artefactual structure from the visualisation of high-dimensional structureless data. In particular we examine the role of the distance metric in the use of topographic mappings based on the statistical field of multidimensional scaling. We show that the use of a squared Euclidean metric (i.e. the SSTRESs measure) gives rise to an annular structure when the input data is drawn from a high-dimensional isotropic distribution, and we provide a theoretical justification for this observation.