953 resultados para 680303 Polymeric materials (e.g. paints)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid active-passive damping treatments combine the reliability, low cost and robustness of viscoelastic damping treatments and the high-performance, modal selective and adaptive piezoelectric active control. Numerous hybrid damping treatments have been reported in the literature. They differ mainly by the relative positions of viscoelastic treatments, sensors and piezoelectric actuators. In this work we present an experimental analysis of three active-passive damping design configurations applied to a cantilever beam. In particular, two design configurations based on the extension mode of piezoelectric actuators combined with viscoelastic constrained layer damping treatments and one design configuration with shear piezoelectric actuators embedded in a sandwich beam with viscoelastic core are analyzed. For comparison purposes, a purely active design configuration with an extension piezoelectric actuator bonded to an elastic beam is also analyzed. The active-passive damping performance of the four design configurations is compared. Results show that active-passive design configurations provide more reliable and wider-range damping performance than the purely active configuration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Surface heat treatment in glasses and ceramics, using CO(2) lasers, has attracted the attention of several researchers around the world due to its impact in technological applications, such as lab-on-a-chip devices, diffraction gratings and microlenses. Microlens fabrication on a glass surface has been studied mainly due to its importance in optical devices (fiber coupling, CCD signal enhancement, etc). The goal of this work is to present a systematic study of the conditions for microlens fabrications, along with the viability of using microlens arrays, recorded on the glass surface, as bidimensional codes for product identification. This would allow the production of codes without any residues (like the fine powder generated by laser ablation) and resistance to an aggressive environment, such as sterilization processes. The microlens arrays were fabricated using a continuous wave CO(2) laser, focused on the surface of flat commercial soda-lime silicate glass substrates. The fabrication conditions were studied based on laser power, heating time and microlens profiles. A He-Ne laser was used as a light source in a qualitative experiment to test the viability of using the microlenses as bidimensional codes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper evaluates the advantages of using hardwood short fibre pulp (eucalyptus) as alternative to softwood long fibre pulp (pinus) and polymer fibres, traditionally used in reinforcement of cement-based materials. The effects of cellulose fibre length on microstructure and on mechanical performance of fibre-cement composites were evaluated before and after accelerated ageing cycles. Hardwood pulp fibres were better dispersed in the cement matrix and provided higher number of fibres per unitary weight or volume, in relation to softwood long fibre pulp. The short reinforcing elements lead to an effective crack bridging of the fragile matrix, which contributes to the improvement of the mechanical performance of the composite after ageing. These promising results show the potential of eucalyptus short fibres for reducing costs by both the partial replacement of expensive synthetic fibres in air curing process and the energy savings during pulp refining. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work deals with analysis of cracked structures using BEM. Two formulations to analyse the crack growth process in quasi-brittle materials are discussed. They are based on the dual formulation of BEM where two different integral equations are employed along the opposite sides of the crack surface. The first presented formulation uses the concept of constant operator, in which the corrections of the nonlinear process are made only by applying appropriate tractions along the crack surfaces. The second presented BEM formulation to analyse crack growth problems is an implicit technique based on the use of a consistent tangent operator. This formulation is accurate, stable and always requires much less iterations to reach the equilibrium within a given load increment in comparison with the classical approach. Comparison examples of classical problem of crack growth are shown to illustrate the performance of the two formulations. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present work is to evaluate the effect of surface modification of cellulose pulp fibres on the mechanical and microstructure of fibre-cement composites. Surface modification of the cellulose pulps was performed with Methacryloxypropyltri-methoxysilane (MPTS) and Aminopropyltri-ethoxysilane (APTS) in an attempt to improve their durability into fibre-cement composites. The surface modification showed significant influence on the microstructure of the composites on the fibre-matrix interface and in the mineralization of the fibre lumen as seen by scanning electron microscopy (SEM) with back-scattered electron (BSE) detector. Accelerated ageing cycles decreased modulus of rupture (MOR) and toughness (TE) of the composites. Composites reinforced with MPTS-modified fibres presented fibres free from cement hydration products, while APTS-modified fibres presented accelerated mineralization. Higher mineralization of the fibres led to higher embrittlement of the composite after accelerated ageing cycles. These observations are therefore very useful for understanding the mechanisms of degradation of fibre-cement composites. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present research was to evaluate the effect of fibre morphology (e.g., length, width, fibrillation, broken ends, content of fines and number of fibres per gram) on flocculation and drainage properties of fibre-cement suspensions and on physical properties of the fibre-cement composites. Mechanical refining was used to change the morphological properties of Eucalyptus and Pinus pulps. Results show that the mechanical refining increased the size of the formed flocs and decreased the concentration of free small particles (with dimensions between 1 and 20 pm) as a consequence of the increased fibrillation and content of fines, which increased the capacity of the fibres to capture the mineral particles. High levels of refining were necessary for Pinus pulp to obtain cement retention values similar to those obtained by unrefined Eucalyptus pulp. This is due to the higher number of fibres per gram in Eucalyptus pulp than in Pinus pulp. Pulp refining improved the packing of the particles and, although decreased the drainage rate. it contributed to a less porous structure, which improved the microstructure of the composite. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mortar is the material responsible for the distribution of stresses in masonry structures. The knowledge about the fresh and hardened properties of mortar is fundamental to ensure a good performance of masonry walls. Water/cement ratio and aggregates grading are among several variables that influence physical and mechanical behaviour of mortars. An experimental program is presented in order to evaluate the influence of aggregates grading and water/cement ratio in workability and hardened properties of mortars. Eighteen compositions of mortar are prepared using three relations cement:lime:sand, two types of sand and three water/cement ratios. Specimens are analyzed through flow table test, compressive and flexural strength tests. Results indicate that the increase of water/cement ratio reduces the values of hardened properties and increases the workability. Besides, sands grading has no influence in compressive strength. On the other hand, significant differences in deformation capacity of mortars were verified with the variation of the type of sand. Finally, some correlations are presented among hardened properties and the compressive strength. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unidirectional fiber composite is considered here, the fibers of which are empty cylindrical holes periodically distributed in a transversely isotropic piezoelectric matrix, The empty-fiber cross-section is circular and the periodicity is the same in two directions at an angle pi/2 or pi/3. Closed-form formulae for all electromechanical effective properties of these 3-1 longitudinally periodic porous piezoelectric materials are presented. The derivation of such expressions is based on the asymptotic homogenization method as a limit of the effective properties of two-phase transversely isotropic parallel fiber-reinforced composites when the fibers properties tend to zero. The plane effective coefficients satisfy the corresponding Schulgasser-Benveniste-Dvorak universal type of relations, A new relation among the antiplane effective constants from the solutions of two antiplane strains and potential local problems is found. This relation is valid for arbitrary shapes of the empty-fiber cross-sections. Based on such a relation, and using recent numerical results for isotropic conductive composites, the antiplane effective properties are computed for different geometrical shapes of the empty-fiber cross-section. Comparisons with other analytical and numerical theories are presented. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This technical note discusses the possibility of using a more simplified scheme to estimate the plastic multiplier when some material shows volume changes, e.g. soil, balsa wood foam and other similar materials. Two procedures regarding volume changes during the plastic phase are discussed here. The first one is the classic procedure applied to non-associative plasticity, for which a Drucker-Prager-like surface is adopted to represent the plastic potential. For the second procedure, the plastic potential is not explicitly known, however, its orthogonal direction is chosen respecting a plastic volume change parameter similar to Poisson`s ratio. Copyright (C) 2007 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider a class of two-dimensional problems in classical linear elasticity for which material overlapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic, and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior penalty formulation of the minimization problem together with both a standard finite element method and classical nonlinear programming techniques to compute the minimizers. We compare both formulations by solving a plane problem numerically in the context of the constrained minimization theory. The problem has a closed-form solution, which is used to validate the numerical results. This solution is regular everywhere, including the boundary. In particular, we show numerical results which indicate that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior and the exterior penalty formulations converge to the same limit function as the penalization is enforced. This limit function yields an approximate deformation field to the plane problem that is locally invertible at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transport of liquid and gaseous pollutants through porous geological media depends on the physical and chemical characteristics of the unconsolidated material, rocks and water associated with the characteristics of the pollutants. Of these characteristics, the sorption aspect is of fundamental importance and is a function of the mineral proportions, pH, Eh and void aspects encountered in the porous media. In the Sao Carlos region, located in the eastern-central part of the 9 ate of Sao Paulo, Brazil, there are basically two types of unconsolidated materials: the first is a residual from sandstones cemented with fines and the secondarily composed of claystones, siltstones and conglomerates from the Cretaceous Period that constitute the Itaqueri Formation; the second is a sandy sediment of the Tertiary Period. These geological conditions are found in areas where chemical products are disposed of characterized as either diffuse or point pollutions sources. Because of this situation, a study was developed to evaluate the sorption aspects of some inorganic cations that are frequently found in these sources, in varied concentrations. Taken into consideration were their physical/chemical properties, such as: specific weight, grain size, mineralogy, cationic exchange capacity, pH, hydraulic conductivity. Batch tests were run using solutions of KCl, ZnCl(2) and CuCl center dot H(2)O at three different pH values, and then with a combined solution (KCl + ZnCl(2) + CuCl center dot H(2)O), also at three different pH values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study evaluated two different support materials (ground tire and polyethylene terephthalate [PET]) for biohydrogen production in an anaerobic fluidized bed reactor (AFBR) treating synthetic wastewater containing glucose (4000 mg L(-1)). The AFBR, which contained either ground tire (R1) or PET (R2) as support materials, were inoculated with thermally pretreated anaerobic sludge and operated at a temperature of 30 degrees C. The AFBR were operated with a range of hydraulic retention times (HRT) between 1 and 8 h. The reactor R1 operating with a HRT of 2 h showed better performance than reactor R2, reaching a maximum hydrogen yield of 2.25 mol H(2) mol(-1) glucose with 1.3 mg of biomass (as the total volatile solids) attached to each gram of ground tire. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of particle samples revealed that reactor R1 favored the presence of hydrogen-producing bacteria such as Clostridium, Bacillus, and Enterobacter. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four anaerobic fluidized bed reactors filled with activated carbon (R1), expanded clay (R2), glass beads (R3) and sand (R4) were tested for anaerobic degradation of LAS. All reactors were inoculated with sludge from a UASB reactor treating swine wastewater and were fed with a synthetic substrate supplemented with approximately 20 mg l(-1) of LAS, on average. To 560 mg l(-1) COD influent, the maximum COD and LAS removal efficiencies were mean values of 97 +/- 2% and 99 +/- 2%, respectively, to all reactors demonstrating the potential applicability of this reactor configuration for treating LAS. The reactors were kept at 30 degrees C and operated with a hydraulic retention time (HRT) of 18 h. The use of glass beads and sand appear attractive because they favor the development of biofilms capable of supporting LAS degradation. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of samples from reactors R3 and R4 revealed that these reactors gave rise to broad microbial diversity, with microorganisms belonging to the phyla Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria, indicating the role of microbial consortia in degrading the surfactant LAS. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of this work was to investigate three packing materials (polyurethane foam, sugar-cane bagasse, and coconut fibre) for biofiltration of a gaseous mixture containing hydrogen sulphide (H(2)S). Mixed cultures were obtained from two sources, aerated submerged biofilters and activated sludge, and were utilised as inoculums. Biofilters reached 100% removal efficiency after two clays of operation. The empty bed residence time was 495 for each of the biofilters. The reactors were operated simultaneously, and the inlet concentrations of H(2)S varied between 184 and 644 ppmv during the long-term continuous operation of the biofilters (100 clays). Average removal efficiencies remained above 99.3%, taking into consideration the entire period of operation. Average elimination capacities reached by the biofilters packed with polyurethane foam, coconut fibre, and sugarcane bagasse were in the range of 17.8-66.6; 18.9-68.8, and 18.7-72.9g m(-3) h(-1), respectively. Finally, we concluded that the packing materials tested in this work are appropriate for the long-term biofiltration of hydrogen sulphide. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the best performance of an anaerobic sequencing batch biofilm reactor (AnSBBR) based on the use of four different bed materials as support for biomass immobilization. The bed materials utilized were Polyurethane foam (PU), vegetal carbon (VC), synthetic pumice (SP), and recycled low-density polyethylene (PE). The AnSBBR. with I total volume Of 7.2 L, was operated in 8-h batch cycles over 10 months, and fed with domestic sewage with an average influent chemical oxygen demand (COD) of 358 +/- 110 mg/L. The average effluent COD values were 121 +/- 31, 208 +/- 54, 233 +/- 52, and 227 +/- 51 mg/L. for PU, VC, SP, and PE, respectively. A modified first-order kinetic model was adjusted to temporal profiles of COD during a batch cycle, and the apparent kinetic constants were 0.52 +/- 0.05, 0.37 +/- 0.05, 0.80 +/- 0.04, and 0.30 +/- 0.021h(-1) for PU, VC, SP, and PE, respectively. Specific substrate utilization rates of 1.08, 0.11, and 0.86 mg COD/mg VS day were obtained for PU, VC, and PE, respectively. Although SP yielded the highest kinetic coefficient, PU was considered the best support, since SP presented loss of chemical constituents during the reactor`s operational phase. In addition, findings oil the microbial community were associated with the reactor`s performance data. Although PE did not show a satisfactory performance, an interesting microbial diversity was found oil its surface. Based oil the morphology and denaturing gradient gel electrophoresis (DGGE) results, PE showed the best capacity for promoting the attachment of methanogenic organisms, and is therefore a material that merits further analysis. PU was considered the Most suitable material showing the best performance in terms of efficiency of solids and COD removal. (C) 2007 Elsevier Ltd. All rights reserved.