992 resultados para 603
Resumo:
The relationship between phytoplankton assemblages and the associated optical properties of the water body is important for the further development of algorithms for large-scale remote sensing of phytoplankton biomass and the identification of phytoplankton functional types (PFTs), which are often representative for different biogeochemical export scenarios. Optical in-situ measurements aid in the identification of phytoplankton groups with differing pigment compositions and are widely used to validate remote sensing data. In this study we present results from an interdisciplinary cruise aboard the RV Polarstern along a north-to-south transect in the eastern Atlantic Ocean in November 2008. Phytoplankton community composition was identified using a broad set of in-situ measurements. Water samples from the surface and the depth of maximum chlorophyll concentration were analyzed by high performance liquid chromatography (HPLC), flow cytometry, spectrophotometry and microscopy. Simultaneously, the above- and underwater light field was measured by a set of high spectral resolution (hyperspectral) radiometers. An unsupervised cluster algorithm applied to the measured parameters allowed us to define bio-optical provinces, which we compared to ecological provinces proposed elsewhere in the literature. As could be expected, picophytoplankton was responsible for most of the variability of PFTs in the eastern Atlantic Ocean. Our bio-optical clusters agreed well with established provinces and thus can be used to classify areas of similar biogeography. This method has the potential to become an automated approach where satellite data could be used to identify shifting boundaries of established ecological provinces or to track exceptions from the rule to improve our understanding of the biogeochemical cycles in the ocean.
Resumo:
As part of the large-scale, interdisciplinary deep-sea study "BIGSET", the relationship between the monsoon-induced regional and temporal variability of POC deposition and the small-sized benthic community was investigated at several sites 2316-4420 m deep in the Arabian Sea during four cruises between 1995 and 1998. Vertical and horizontal distribution patterns of chloroplastic pigments (a measure of phytodetritus deposition), readily soluble protein and activity, and biomass parameters of the small-sized benthic community (Electron Transport System Activity (ETSA); bacterial ectoenzymatic activity (FDA turnover) and DNA concentrations) were measured concurrently with the vertical fluxes of POC and chloroplastic pigments. Sediment chlorophyll a (chl. a) profiles were used to calculate chl. a flux rates and to estimate POC flux across the sediment water interface using two different transport reaction models. These estimates were compared with corresponding flux rates determined in sediment traps. Regional variability of primary productivity and POC deposition at the deep-sea floor creates a trophic gradient in the Arabian Basin from the NW to the SE, which is primarily related to the activity of monsoon winds and processes associated with the topography of the Arabian Basin and the vicinity of land masses. Inventories of sediment chloroplastic pigments closely corresponded to this trophic gradient. For ETSA, FDA and DNA, however, no clear coupling was found, although stations WAST (western Arabian Sea) and NAST (northern Arabian Sea) were characterised by high concentrations and activities. These parameters exhibited high spatial and temporal variability, making it impossible to recognise clear mechanisms controlling temporal and spatial community patterns of the small-sized benthic biota. Nevertheless, the entire Arabian Basin was recognised as being affected by monsoonal activity. Comparison of two different transport reaction models indicates that labile chl. a buried in deeper sediment layers may escape rapid degradation in Arabian deep-sea sediments.
Resumo:
Phycobiliproteins are a family of water-soluble pigment proteins that play an important role as accessory or antenna pigments and absorb in the green part of the light spectrum poorly used by chlorophyll a. The phycoerythrins (PEs) are one of four types of phycobiliproteins that are generally distinguished based on their absorption properties. As PEs are water soluble, they are generally not captured with conventional pigment analysis. Here we present a statistical model based on in situ measurements of three transatlantic cruises which allows us to derive relative PE concentration from standardized hyperspectral underwater radiance measurements (Lu). The model relies on Empirical Orthogonal Function (EOF) analysis of Lu spectra and, subsequently, a Generalized Linear Model with measured PE concentrations as the response variable and EOF loadings as predictor variables. The method is used to predict relative PE concentrations throughout the water column and to calculate integrated PE estimates based on those profiles.
Resumo:
Here we present results of the first comprehensive study of sulphur compounds and methane in the oligotrophic tropical West Pacific Ocean. The concentrations of dimethylsuphide (DMS), dimethylsulphoniopropionate (DMSP), dimethylsulphoxide (DMSO), and methane (CH4), as well as various phytoplankton marker pigments in the surface ocean were measured along a north-south transit from Japan to Australia in October 2009. DMS (0.9 nmol/l), dissolved DMSP (DMSPd, 1.6 nmol/l) and particulate DMSP (DMSPp, 2 nmol/l) concentrations were generally low, while dissolved DMSO (DMSOd, 4.4 nmol/l) and particulate DMSO (DMSOp, 11.5 nmol/l) concentrations were comparably enhanced. Positive correlations were found between DMSO and DMSP as well as DMSP and DMSO with chlorophyll a, which suggests a similar source for both compounds. Similar phytoplankton groups were identified as being important for the DMSO and DMSP pool, thus, the same algae taxa might produce both DMSP and DMSO. In contrast, phytoplankton seemed to play only a minor role for the DMS distribution in the western Pacific Ocean. The observed DMSPp : DMSOp ratios were very low and seem to be characteristic of oligotrophic tropical waters representing the extreme endpoint of the global DMSPp : DMSOp ratio vs. SST relationship. It is most likely that nutrient limitation and oxidative stress in the tropical West Pacific Ocean triggered enhanced DMSO production leading to an accumulation of DMSO in the sea surface. Positive correlations between DMSPd and CH4, as well as between DMSO (particulate and total) and CH4, were found along the transit. We conclude that both DMSP and DMSO serve as substrates for methanogenic bacteria in the western Pacific Ocean.