1000 resultados para 540 Chemistry
Resumo:
The preparations, X-ray structures, and magnetic characterizations are presented for two new pentadecanuclear cluster compounds: [NiII{NiII(MeOH)3}8(μ-CN)30{MV(CN)3}6]·xMeOH·yH2O (MV = MoV (1) with x = 17, y = 1; MV = WV (2) with x = 15, y = 0). Both compounds crystallize in the monoclinic space group C2/c, with cell dimensions of a = 28.4957(18) Å, b = 19.2583(10) Å, c = 32.4279(17) Å, β = 113.155(6)°, and Z = 4 for 1 and a = 28.5278(16) Å, b = 19.2008(18) Å, c = 32.4072(17) Å, β = 113.727(6)°, and Z = 4 for 2. The structures of 1 and 2 consist of neutral cluster complexes comprising 15 metal ions, 9 NiII and 6 MV, all linked by μ-cyano ligands. Magnetic susceptibilities and magnetization measurements of compounds 1 and 2 in the crystalline and dissolved state indicate that these clusters have a S = 12 ground state, originating from intracluster ferromagnetic exchange interactions between the μ-cyano-bridged metal ions of the type NiII−NC−MV. Indeed, these data show clearly that the cluster molecules stay intact in solution. Ac magnetic susceptibility measurements reveal that the cluster compounds exhibit magnetic susceptibility relaxation phenomena at low temperatures since, with nonzero dc fields, χ‘ ‘M has a nonzero value that is frequency dependent. However, there appears no out-of-phase (χ‘ ‘M) signal in zero dc field down to 1.8 K, which excludes the expected signature for a single molecule magnet. This finding is confirmed with the small uniaxial magnetic anisotropy value for D of 0.015 cm-1, deduced from the high-field, high-frequency EPR measurement, which distinctly reveals a positive sign in D. Obviously, the overall magnetic anisotropy of the compounds is too low, and this may be a consequence of a small single ion magnetic anisotropy combined with the highly symmetric arrangement of the metal ions in the cluster molecule.
Resumo:
The ligand 1,2-bis(1H-benzimidazol-2-yl)-1,2-ethanediol, 1, and its methylated derivative 2 are readily synthesized from tartaric acid, and act as chiral, facially coordinating tridentate ligands, forming complexes of composition ML2 with octahedral transition metals. The copper(II) complexes show distorted 4 + 2 coordination with benzimidazoles occupying the equatorial sites and alcohol functions weakly binding in the axial sites. Nickel(II) complexes in three different states of protonation show regular octahedral geometry with the alcohols mutually cis. Deprotonation of the coordinated alcohol produces little structural change but the monodeprotonated complex forms a hydrogen bonded dimer. Magnetic measurements show the hydrogen bonded bridge to offer a pathway for weak antiferromagnetic coupling. UV-Visible spectroscopy shows the ligand to have a field intermediate between water and pyridine. The diastereoselectivity of complexation depends on the geometry: nickel(II) shows a weak preference for the homochiral complex, whereas copper(II) forms almost exclusively homochiral complexes.
Resumo:
An improved and efficient synthetic route to four functionalized bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF) derivatives 2−5 is reported. Tetrathiolate 1 was readily prepared from 2,2‘-bis(1,3,4,6-tetrathiapentalen-5-one) under carefully controlled conditions. Subsequent reaction of 1 with selected primary alkyl halides affords new functionalized BEDT-TTF derivatives in good yields.
Resumo:
Compounds [NH3(CH2)4NH3]Cu3(hedp)2·2H2O (1) and [NH3(CH2)3NH3]Cu3(hedp)2·3.5H2O (2), where hedp represents 1-hydroxyethylidenediphosphonate, exhibit two-dimensional structures closely related to each other. The anionic layers with composition {Cu3(hedp)2}n2n- contain four- and eight-membered rings assembled from vertex-sharing {CuO4} units and {CPO3} tetrahedra. The protonated diamines and lattice water fill the interlayer spaces. Crystal data for 2: space group P1̄, a = 8.0315(4), b = 11.3713(6), c = 13.3117(7) Å, α = 97.122(1), β = 103.187(1), γ = 108.668(1)°, V = 1095.5(1) Å3, Z = 2. Magnetic properties of the two compounds have been investigated. Both show typical metamagnetic behaviors at low temperature. The critical field at which the antiferromagnetic ground-state switches to a ferrimagnetic state is ∼48 Oe for 1 and 185 Oe for 2 at about 2 K.
Resumo:
This paper describes the syntheses and characterization of two new copper(II) diphosphonates: [NH3(CH2)2NH3]2[Cu2(hedp)2]·H2O (1) and [NH3CH(CH3)CH2NH3]2[Cu2(hedp)2] (2) (hedp = 1-hydroxyethylidenediphosphonate). Both compounds exhibit similar one-dimensional linear chain structures. The symmetrical {Cu2(hedp)2} dimers are connected by edge-shared {CuO5} square pyramids and form infinite chains. The Cu(II) ions are alternately bridged by O–P–O groups and O atoms. The Cu–O–Cu angles are 95.8(1) and 96.1(1)° for 1 and 2, respectively. Their magnetic properties show moderately strong antiferromagnetic interactions in both compounds.
Resumo:
Using molecular building blocks to self-assemble lattices supporting long-range magnetic order is currently an active area of solid-state chemistry. Consequently, it is the realm of supramolecular chemistry that synthetic chemists are turning to in order to develop techniques for the synthesis of structurally well-defined supramolecular materials. In recent years we have investigated the versatility and usefulness of two classes of molecular building blocks, namely, tris-oxalato transition-metal (M. Pilkington and S. Decurtins, in “Magnetoscience—From Molecules to Materials,” Wiley–VCH, 2000), and octacyanometalate complexes (Pilkington and Decurtins, Chimia 54, 593 (2001)), for applications in the field of molecule-based magnets. Anionic, tris-chelated oxalato building blocks are able to build up two-dimensional honeycomb-layered structural motifs as well as three-dimensional decagon frameworks. The discrimination between the crystallization of the two- or three-dimensional structures relies on the choice of the templating counterions (Decurtins, Chimia 52, 539 (1998); Decurtins et al. Mol. Cryst. Liq. Cryst. 273, 167 (1995); New J. Chem. 117 (1998)). These structural types display a range of ferro, ferri, and antiferromagnetic properties (Pilkington and Decurtins, in “Magnetoscience—From Molecules to Materials”). Octacyanometalate building blocks self-assemble to afford two new classes of cyano-bridged compounds namely, molecular clusters and extended three dimensional networks (J. Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000); Pilkington et al., in preparation). The molecular cluster with a MnII9MoV6 core has the highest ground state spin value, S=51/2, reported to-date (Larionova et al., Angew. Chem. Int. Ed. 39, 1605 (2000)). In the high-temperature regime, the magnetic properties are characterized by ferromagnetic intracluster coupling. In the magnetic range below 44 K, the magnetic cluster signature is lost as possibly a bulk behavior starts to emerge. The three-dimensional networks exhibit both paramagnetic and ferromagnetic behavior, since the magnetic properties of these materials directly reflect the electronic configuration of the metal ion incorporated into the octacyanometalate building blocks (Pilkington et al., in preparation). For both the oxalate- and cyanide-bridged materials, we are able to manipulate the magnetic properties of the supramolecular assemblies by tuning the electronic configurations of the metal ions incorporated into the appropriate molecular building blocks (Pilkington and Decurtins, in “Magnetoscience—From Molecules to Materials,” Chimia 54, 593 (2000)).
Resumo:
The numerical simulations of the magnetic properties of extended three-dimensional networks containing M(II) ions with an S = 5/2 ground-state spin have been carried out within the framework of the isotropic Heisenberg model. Analytical expressions fitting the numerical simulations for the primitive cubic, diamond, together with (10−3) cubic networks have all been derived. With these empirical formulas in hands, we can now extract the interaction between the magnetic ions from the experimental data for these networks. In the case of the primitive cubic network, these expressions are directly compared with those from the high-temperature expansions of the partition function. A fit of the experimental data for three complexes, namely [(N(CH3)4][Mn(N3)] 1, [Mn(CN4)]n 2, and [FeII(bipy)3][MnII2(ox)3] 3, has been carried out. The best fits were those obtained using the following parameters, J = −3.5 cm-1, g = 2.01 (1); J = −8.3 cm-1, g = 1.95 (2); and J = −2.0 cm-1, g = 1.95 (3).
Resumo:
Our research goals are focused on the preparation of novel molecule-based materials that possess specifically designed properties in solution or in the solid state e.g. self-assembly, magnetism, conductivity and spin crossover phenomena. Most of our systems incorporate paramagnetic transition metal ions and the search for new molecule-based magnetic materials is a prominent theme. Specific areas of research include the preparation and study of oxalate based 2D and 3D magnets, probing the versatility of octacyanometalate building blocks as precursors for new molecular magnets, and the preparation of new tetrathiafulvalene (TIF) derivatives for applications in molecular and supramolecular chemistry.
Resumo:
The field of molecule-based magnets is a relatively new branch of chemistry, which involves the design and study of molecular compounds that exhibit a spontaneous magnetic ordering below a critical temperature, Tc. One major goal involves the design of materials with tuneable Tc's for specific applications in memory storage devices. Molecule-based magnets with high magnetic ordering temperatures have recently been obtained from bimetallic and mixed-valence transition metal μ-cyanide complexes of the Prussian blue family. Since the μ-cyanide linkages permit an interaction between paramagnetic metal ions, cyanometalate building blocks have found useful applications in the field of molecule-based magnets. Our work involves the use of octacyanometalate building blocks for the self-assembly of two new classes of magnetic materials namely, high-spin molecular clusters which exhibit both ferromagnetic intra- and intercluster coupling, and specific extended network topologies which show long-range ferromagnetic ordering.
Resumo:
Luminescence and energy transfer in [Zn1-xRux(bpy)3][NaAl1-yCry(ox)3] (x ≈ 0.01, y = 0.006 − 0.22; bpy = 2,2‘-bipyridine, ox = C2O42-) and [Zn1-x-yRuxOsy(bpy)3][NaAl(ox)3] (x ≈ 0.01, y = 0.012) are presented and discussed. Surprisingly, the luminescence of the isolated luminophores [Ru(bpy)3]2+ and [Os(bpy)3]2+ in [Zn(bpy)3][NaAl(ox)3] is hardly quenched at room temperature. Steady-state luminescence spectra and decay curves show that energy transfer occurs between [Ru(bpy)3]2+ and [Cr(ox)3]3- and between [Ru(bpy)3]2+ and [Os(bpy)3]2+ in [Zn1-xRux(bpy)3][NaAl1-yCry(ox)3] and [Zn1-x-yRuxOsy(bpy)3] [NaAl(ox)3], respectively. For a quantitative investigation of the energy transfer, a shell type model is developed, using a Monte Carlo procedure and the structural parameters of the systems. A good description of the experimental data is obtained assuming electric dipole−electric dipole interaction between donors and acceptors, with a critical distance Rc for [Ru(bpy)3]2+ to [Cr(ox)3]3- energy transfer of 15 Å and for [Ru(bpy)3]2+ to [Os(bpy)3]2+ energy transfer of 33 Å. These values are in good agreement with those derived using the Förster−Dexter theory.