921 resultados para 4-NQO resistance
Resumo:
Thermodynamics, equilibrium structure, and dynamics of glass-forming liquids Ca(NO(3))(2)center dot nH(2)O, n=4, 6, and 8, have been investigated by molecular dynamics (MD) simulations. A polarizable model was considered for H(2)O and NO(3)- on the basis of previous fluctuating charge models for pure water and the molten salt 2Ca(NO(3))(2)center dot 3KNO(3). Similar thermodynamic properties have been obtained with nonpolarizable and polarizable models. The glass transition temperature, T(g), estimated from MD simulations was dependent on polarization, in particular the dependence of T(g) with electrolyte concentration. Significant polarization effects on equilibrium structure were observed in cation-cation, cation-anion, and water-water structures. Polarization increases the diffusion coefficient of H(2)O, but does not change significantly the diffusion coefficients of ions. Viscosity decreases upon inclusion of polarization, but the conductivity calculated with the polarizable model is smaller than the nonpolarizable model because polarization enhances anion-cation interactions.
Resumo:
Tibolone is used for hormone reposition of postmenopause women and isotibolone is considered the major degradation product of tibolone. Isotibolone can also be present in tibolone API raw materials due to some inadequate synthesis. Its presence is then necessary to be identified and quantified in the quality control of both API and drug products. In this work we present the indexing of an isotibolone X-ray diffraction pattern measured with synchrotron light (lambda=1.2407 angstrom) in the transmission mode. The characterization of the isotibolone sample by IR spectroscopy, elemental analysis, and thermal analysis are also presented. The isotibolone crystallographic data are a=6.8066 angstrom, b=20.7350 angstrom, c=6.4489 angstrom, beta=76.428 degrees, V=884.75 angstrom(3), and space group P2(1), rho(o)= 1.187 g cm(-3), Z=2. (C) 2009 International Centre for Diffraction Data. [DOI: 10.1154/1.3257612]
Resumo:
The 1,3,4-oxadiazinane ring in the title compound, C(18)H(18)N(2)O(4), is in a twisted boat conformation. The two carbonyl groups are orientated towards the same side of the molecule. The dihedral angle between the planes of the benzene rings is 76.6 (3)degrees. Molecules are sustained in the three-dimensional structure by a combination of C-H center dot center dot center dot O, C-H center dot center dot center dot pi and pi-pi [shortest centroid-centroid distance = 3.672 (6) angstrom] interactions.
Resumo:
The 1,3,4-oxadiazinan-2-one ring in the title compound, C(12)H(13)ClN(2)O(3), is in a distorted half-chair conformation. The phenyl and chloroacetyl groups occupy axial and equatorial positions, respectively, and lie to the opposite side of the molecule to the N-bound methyl substituent. Molecules are consolidated in the crystal structure by C-H center dot center dot center dot O interactions.
Resumo:
The cyclohexanone ring in the title compound, C(13)H(16)O(3)S, is in a distorted chair conformation. The intramolecular S center dot center dot center dot O(carbonyl) distance is 2.814 (2) angstrom. Molecules are connected into a two-dimensional array via C-H center dot center dot center dot O contacts involving the carbonyl and sulfinyl O atoms.
Resumo:
A simple method was developed for spectrophotometric determination of some nonsteroidal anti-inflammatory drugs (meloxicam, piroxicam and tenoxicam) based on the reduction of copper(II) in buffered solution (pH 7.0) and micellar medium containing 4,4'-dicarboxy-2,2'-buffered solution (pH 7.0) and micellar medium containing 4,4'-dicarboxy-2,2'-biquinoline acid. The-biquinoline acid. The absorbance values at 558 nm, characteristic of the formed Cu(I)/4,4'-dicarboxy-2,2'-biquinoline complexes, are linear with the concentrations (5.7-40 mmol L(-1), n = 5) of these oxicams (meloxicam r = 0.998; piroxicam and tenoxicam r = 0.999). The limit of detection values, in mmol L(-1), calculated for meloxicam (2.7), piroxicam (1.2) and tenoxicam (1.3) was obtained with 99% confidence level and the relative standard deviations for meloxicam (3.1%), piroxicam (5.1%) and tenoxicam (1.2%) were calculated using a 25 mmol L(-1) solution (n = 7). Mean recovery values for meloxicam, piroxicam and tenoxicam forms were 100 +/- 6.9, 98.6 +/- 3.6 and 99.4 +/- 2.5%, respectively. The conditional potential of Cu(II)/Cu(I) in complex medium of 7.5 mmol L(-1) BCA was determined to be 629 +/- 11 mV vs. NHE.