984 resultados para 126-790
Resumo:
We present reduced dimensionality (RD) 3D HN(CA)NH for efficient sequential assignment in proteins. The experiment correlates the N-15 and H-1 chemical shift of a residue ('i') with those of its immediate N-terminal (i - 1) and C-terminal (i + 1) neighbors and provides four-dimensional chemical shift correlations rapidly with high resolution. An assignment strategy is presented which combines the correlations observed in this experiment with amino acid type information obtained from 3D CBCA(CO)NH. By classifying the 20 amino acid types into seven distinct categories based on C-13(beta) chemical shifts, it is observed that a stretch of five sequentially connected residues is sufficient to map uniquely on to the polypeptide for sequence specific resonance assignments. This method is exemplified by application to three different systems: maltose binding protein (42 kDa), intrinsically disordered domain of insulin-like growth factor binding protein-2 and Ubiquitin. Fast data acquisition is demonstrated using longitudinal H-1 relaxation optimization. Overall, 3D HN(CA)NH is a powerful tool for high throughput resonance assignment, in particular for unfolded or intrinsically disordered polypeptides.
Resumo:
Ferrocene-conjugated oxidovanadium(IV) complexes [VO(Fc-tpy)(B)](ClO4)(2) (1-4) and [VO(Ph-tpy)(dppz)](ClO4)(2) (5) as a control [Fc = (eta(5)-C5H4)Fe-II(eta(5)-C5H5), Fc-tpy = 4'-ferrocenyl-2,2':6',2 `'-terpyridine, Ph-tpy = 4'-phenyl-2,2':6',2 `'-terpyridine, B = heterocyclic base: 2,2'-bipyridine (bpy in 1), 1,10-phenanthroline (phen in 2), dipyridoquinoxaline (dpq in 3), dipyridophenazine (dppz in 4)] were prepared and their DNA binding, DNA photocleavage activity and photocytotoxicity studied. The crystal structure of [VO(Fc-tpy)(bpy)](PF6)(2)center dot 3Me(2)CO shows a vanadyl group in six-coordinate (VON5)-O-IV coordination geometry, in which Fc-tpy and bpy display tridentate meridional and bidentate N-donor axial-equatorial binding modes, respectively. The one-electron paramagnetic complexes exhibit a charge-transfer band near 590 nm in DMF. The V-IV/V-III redox couple in 1-4 appears near -0.7 V, whereas the Fc moiety shows a response near 0.6 V vs. SCE in DMF/0.1 M TBAP. The complexes are good binders to calf thymus DNA with K-b values of 10(4)-10(6) M-1. DNA melting and viscometric data suggest groove and/or partial intercalative DNA binding of the complexes. Complexes 3-5 display DNA photocleavage activity in nearIR light of 785 nm. Complex 4 shows significant photocytotoxicity in visible light (400-700 nm) in HeLa cells with low dark toxicity.
Resumo:
Thermoluminescence (TL) measurements were carried out on undoped and Mn2+ doped (0.1 mol%) yttrium aluminate (YAlO3) nanopowders using gamma irradiation in the dose range 1-5 kGy. These phosphors have been prepared at furnace temperatures as low as 400 degrees C by using the combustion route. Powder X-ray diffraction confirms the orthorhombic phase. SEM micrographs show that the powders are spherical in shape, porous with fused state and the size of the particles appeared to be in the range 50-150 nm. Electron Paramagnetic Resonance (EPR) studies reveal that Mn ions occupy the yttrium site and the valency of manganese remains as Mn2+. The photoluminescence spectrum shows a typical orange-to-red emission at 595 nm and suggests that Mn2+ ions are in strong crystalline environment. It is observed that TL intensity increases with gamma dose in both undoped and Mn doped samples. Four shouldered TL peaks at 126, 240, 288 and 350 degrees C along with relatively resolved glow peak at 180 degrees C were observed in undoped sample. However, the Mn doped samples show a shouldered peak at 115 degrees C along with two well defined peaks at similar to 215 and 275 degrees C. It is observed that TL glow peaks were shifted in Mn doped samples. The kinetic parameters namely activation energy (E), order of kinetics (b), frequency factor (s) of undoped, and Mn doped samples were determined at different gamma doses using the Chens glow peak shape method and the results are discussed in detail. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Superabsorbent polymers (SAPs) of acrylic acid, sodium acrylate, and acrylamide (AM), crosslinked with ethylene glycol dimethacrylate, were synthesized by inverse suspension polymerization. The equilibrium swelling capacities of the SAPs were determined and these decreased with increasing AM content. The adsorption of the two cationic dyes, methylene blue and rhodamine 6G, on the dry as well as equilibrium swollen SAPs was investigated. The amount of the dye adsorbed at equilibrium per unit weight of the SAPs and the rate constants of adsorption were determined. The amount of the dye adsorbed at equilibrium by the SAPs decreased with increasing mol % of AM in the SAPs. The amount of the dye adsorbed at equilibrium was almost equal for the dry and equilibrium swollen SAPs. However, the equilibrium swollen SAPs adsorbed dyes at a higher rate than the dry SAPs. The higher rate of adsorption was attributed to the availability of all the anionic groups present in the fully elongated conformation of the SAPs in the equilibrium swollen state. The effect of initial dye concentration on the adsorption was also investigated and the adsorption was described by Langmuir adsorption isotherms. (C) 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012
Resumo:
Three dimensional digital model of a representative human kidney is needed for a surgical simulator that is capable of simulating a laparoscopic surgery involving kidney. Buying a three dimensional computer model of a representative human kidney, or reconstructing a human kidney from an image sequence using commercial software, both involve (sometimes significant amount of) money. In this paper, author has shown that one can obtain a three dimensional surface model of human kidney by making use of images from the Visible Human Data Set and a few free software packages (ImageJ, ITK-SNAP, and MeshLab in particular). Images from the Visible Human Data Set, and the software packages used here, both do not cost anything. Hence, the practice of extracting the geometry of a representative human kidney for free, as illustrated in the present work, could be a free alternative to the use of expensive commercial software or to the purchase of a digital model.
Resumo:
This paper presents a spectral finite element formulation for uniform and tapered rotating CNT embedded polymer composite beams. The exact solution to the governing differential equation of a rotating Euler-Bernoulli beam with maximum centrifugal force is used as an interpolating function for the spectral element formulation. Free vibration and wave propagation analysis is carried out using the formulated spectral element. The present study shows the substantial effect of volume fraction and L/D ratio of CNTs in a beam on the natural frequency, impulse response and wave propagation characteristics of the rotating beam. It is found that the CNTs embedded in the matrix can make the rotating beam non-dispersive in nature at higher rotation speeds. Embedded CNTs can significantly alter the dynamics of polymer-nanocomposite beams. The results are also compared with those obtained for carbon fiber reinforced laminated composite rotating beams. It is observed that CNT reinforced rotating beams are superior in performance compared to laminated composite rotating beams. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Oxygen nonstoichiometry of three ternary oxides. YFeO3-delta, YFe2O4-alpha and Y3Fe5O12-theta. in the system Y-Fe-O was investigated as a function of oxygen partial pressure by thermogravimetry at high temperature. The defects responsible for nonstoichiometry were identified as oxygen vacancies for YFeO3-delta and YFe2O4-alpha although the manner of variation of nonstoichiometric parameter with oxygen partial pressure for these two oxides is quite different. Cation interstitials are the predominant defects in Y3Fe5O12-theta. Gibbs energies of formation of the three nonstoichiometric oxides were determined using solid-state electrochemical cells in the temperature range from 975 to 1475 K. YFe2O4-alpha was found to be stable only above 1391 K. Gibbs energies of formation of the three stoichiometric compounds from their component binary oxides were obtained by combining information from solid state cells with results of thermogravimetric analysis using the Gibbs-Duhem relation. The results can be summarized as: (1/2)Y2O3 + (1/2)Fe2O3 -> YFeO3;Delta G(f(ox))(O)(+/- 250)(J/mol) = 17, 126-8.263T (1/2)Y2O3 + FeO + (1/2)Fe2O3 -> YFe2O4;Delta G(f(ox))(O)(+/- 260)(J/mol) = -10,352-13.24T (3/2)Y2O3 + (5/2)Fe2O3 -> Y3Fe5O12;Delta G(f(ox))(O)(+/- 780)(J/mol) = -56, 647-31.091T. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Competition theory predicts that local communities should consist of species that are more dissimilar than expected by chance. We find a strikingly different pattern in a multicontinent data set (55 presence-absence matrices from 24 locations) on the composition of mixed-species bird flocks, which are important sub-units of local bird communities the world over. By using null models and randomization tests followed by meta-analysis, we find the association strengths of species in flocks to be strongly related to similarity in body size and foraging behavior and higher for congeneric compared with noncongeneric species pairs. Given the local spatial scales of our individual analyses, differences in the habitat preferences of species are unlikely to have caused these association patterns; the patterns observed are most likely the outcome of species interactions. Extending group-living and social-information-use theory to a heterospecific context, we discuss potential behavioral mechanisms that lead to positive interactions among similar species in flocks, as well as ways in which competition costs are reduced. Our findings highlight the need to consider positive interactions along with competition when seeking to explain community assembly.
Resumo:
A concise and expeditious approach for the total synthesis of bioactive styryllactone (-)-crassalactone C is presented from tartaric acid. The main features of the synthesis include the desymmetrization of dimethylamide of tartaric acid and the effective use of cinnamoyl ester as a protecting group as well as a reactant in the ring-closing metathesis reaction.
Resumo:
We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.
Resumo:
Oxovanadi um(IV) complexes VO(Fc-pic)(acac)](ClO4) (1), VO(Fc-pic)(cur)](ClO4) (2), VO(Ph-pic)(acac)](ClO4) (3) and VO(Ph-pic)(cur)](ClO4) (4), where Fc-pic and Ph-pic are ferrocenylmethyl-bis-(2-pyridylmethylamine) (in 1, 2) and bis-(2-pyridylmethyl)benzylamine (in 3, 4), respectively, acac is acetylacetonate anion (in 1, 3) and cur is curcumin anion (in 2, 4) were prepared, characterized and their photo-induced DNA cleavage and anticancer activity studied. The crystal structure of 1 as its PF6 salt (1a) shows the presence of a VO2+ moiety in VO3N3 coordination geometry. The complexes show a d-d band at similar to 790 nm in DMF and display V(IV)/V(III) redox couple near -1.45 V vs. SCE in DMF-0.1 M TBAP. The complexes are avid binders to calf thymus DNA. Complex 2 efficiently photo-cleaves plasmid DNA in near-IR light of 785 nm forming (OH)-O-center dot radicals. The curcumin complexes show photocytotoxicity in HeLa cancer cells in visible light of 400-700 nm with significant cellular uptake within 4 h of incubation time.
Resumo:
We consider supersymmetric models in which the lightest Higgs scalar can decay invisibly consistent with the constraints on the 126 GeV state discovered at the CERN LHC. We consider the invisible decay in the minimal supersymmetric standard model (MSSM), as well its extension containing an additional chiral singlet superfield, the so-called next-to-minimal or nonminimal supersymmetric standard model (NMSSM). We consider the case of MSSM with both universal as well as nonuniversal gaugino masses at the grand unified scale, and find that only an E-6 grand unified model with unnaturally large representation can give rise to sufficiently light neutralinos which can possibly lead to the invisible decay h(0) -> (chi) over tilde (0)(1)(chi) over tilde (0)(1). Following this, we consider the case of NMSSM in detail, where we also find that it is not possible to have the invisible decay of the lightest Higgs scalar with universal gaugino masses at the grand unified scale. We delineate the regions of the NMSSM parameter space where it is possible for the lightest Higgs boson to have a mass of about 126 GeV, and then concentrate on the region where this Higgs can decay into light neutralinos, with the soft gaugino masses M-1 and M-2 as two independent parameters, unconstrained by grand unification. We also consider, simultaneously, the other important invisible Higgs decay channel in the NMSSM, namely the decay into the lightest CP-odd scalars, h(1) -> a(1)a(1), which is studied in detail. With the invisible Higgs branching ratio being constrained by the present LHC results, we find that mu(eff) < 170 GeV and M-1 < 80 GeV are disfavored in NMSSM for fixed values of the other input parameters. The dependence of our results on the parameters of NMSSM is discussed in detail.
Resumo:
The present paper is aimed to understand the sub-processes triggered by rapid heating during spark plasma sintering as well as to assess the extent to which densification and properties of metallic materials can be enhanced using such superfast consolidation process. Using nanocrystalline Cu-Pb as a model system, the influence of Pb as well as TiB2 addition on the densification mechanisms and properties are discussed. Importantly, a high hardness of 2 GPa is achieved in Cu-based nanocomposites. (C) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.