936 resultados para 120405 Models of Engineering Design
Resumo:
The etiology of colorectal cancer (CRC), a common cause of cancer-related mortality globally, has strong associations with diet. There is considerable epidemiological evidence that fruits and vegetables are associated with reduced risk of CRC. This paper reviews the extensive evidence, both from in vitro studies and animal models, that components of berry fruits can modulate biomarkers of DNA damage and that these effects may be potentially chemoprotective, given the likely role that oxidative damage plays in mutation rate and cancer risk. Human intervention trials with berries are generally consistent in indicating a capacity to significantly decrease oxidative damage to DNA, but represent limited evidence for anticarcinogenicity, relying as they do on surrogate risk markers. To understand the effects of berry consumption on colorectal cancer risk, future studies will need to be well controlled, with defined berry extracts, using suitable and clinically relevant end points and considering the importance of the gut microbiota.
Resumo:
Residential electricity demand in most European countries accounts for a major proportion of overall electricity consumption. The timing of residential electricity demand has significant impacts on carbon emissions and system costs. This paper reviews the data and methods used in time use studies in the context of residential electricity demand modelling. It highlights key issues which are likely to become more topical for research on the timing of electricity demand following the roll-out of smart metres.
Resumo:
Background. Current models of concomitant, intermittent strabismus, heterophoria, convergence and accommodation anomalies are either theoretically complex or incomplete. We propose an alternative and more practical way to conceptualize clinical patterns. Methods. In each of three hypothetical scenarios (normal; high AC/A and low CA/C ratios; low AC/A and high CA/C ratios) there can be a disparity-biased or blur-biased “style”, despite identical ratios. We calculated a disparity bias index (DBI) to reflect these biases. We suggest how clinical patterns fit these scenarios and provide early objective data from small illustrative clinical groups. Results. Normal adults and children showed disparity bias (adult DBI 0.43 (95%CI 0.50-0.36), child DBI 0.20 (95%CI 0.31-0.07) (p=0.001). Accommodative esotropes showed less disparity-bias (DBI 0.03). In the high AC/A and low CA/C scenario, early presbyopes had mean DBI of 0.17 (95%CI 0.28-0.06), compared to DBI of -0.31 in convergence excess esotropes. In the low AC/A and high CA/C scenario near exotropes had mean DBI of 0.27, while we predict that non-strabismic, non-amblyopic hyperopes with good vision without spectacles will show lower DBIs. Disparity bias ranged between 1.25 and -1.67. Conclusions. Establishing disparity or blur bias, together with knowing whether convergence to target demand exceeds accommodation or vice versa explains clinical patterns more effectively than AC/A and CA/C ratios alone. Excessive bias or inflexibility in near-cue use increases risk of clinical problems. We suggest clinicians look carefully at details of accommodation and convergence changes induced by lenses, dissociation and prisms and use these to plan treatment in relation to the model.
Resumo:
A series of inquiries and reports suggest considerable failings in the care provided to some patients in the NHS. Although the Bristol Inquiry report of 2001 led to the creation of many new regulatory bodies to supervise the NHS, they have never enjoyed consistent support from government and the Mid Staffordshire Inquiry in 2013 suggests they made little difference. Why do some parts of the NHS disregard patients’ interests and how we should we respond to the challenge? The following discusses the evolution of approaches to NHS governance through the Hippocratic, Managerial and Commercial models, and assesses their risks and benefits. Apart from the ethical imperative, the need for effective governance is driven both by the growth in information available to the public and the resources wasted by ineffective systems of care. Appropriate solutions depend on an understanding of the perverse incentives inherent in each model and the need for greater sensitivity to the voices of patients and the public.
Resumo:
Good urban design has the power to aid in the provision of inclusive journey environments, yet traditionally neglects the perspective of the cyclist. This paper starts from the premise that more can be done to understand and articulate cyclists’ experiences and perceptions of the urban environment in which they cycle, as part of a closer linking of urban design qualities with transport planning and infrastructure interventions. This approach is particularly applicable in relation to older cyclists, a group whose needs are often poorly understood and for whom perceptions can significantly influence mobile behaviours. Currently, knowledge regarding the relationship between the built environment and physical activity, including cycling, in older adults is limited. As European countries face up to the challenges associated with ageing populations, some metropolitan regions, such as Munich, Germany, are making inroads into widening cycling’s appeal across generations through a combination of urban design, policy and infrastructure initiatives. The paper provides a systematic understanding of the urban design qualities and built environment features that affect cycling participation and have the potential to contribute towards healthy ageing. Urban design features such as legibility, aesthetics, scale and open space have been shown to influence and affect other mobile behaviours (e.g. walking), but their role as a mediator in cycle behaviour remains under-explored. Many of these design ‘qualities’ are related to individual perceptions; capturing these can help build a picture of quality in the built environment that includes an individual’s relationship with their local neighbourhood and its influences on their mobility choices. Issues of accessibility, facilities, and safety in cycling remain crucial, and, when allied to these design ‘qualities‘, provides a more rounded reflection of everyday journeys and trips taken or desired. The paper sets out the role that urban design might play in mediating these critical mobility issues, and in particular, in better understanding the ‘quality of the journey’. It concludes by highlighting the need for designers, policy makers, planners and academics to consider the role that design can play in encouraging cycle participation, especially as part of a healthy ageing agenda.
Resumo:
In the UK, architectural design is regulated through a system of design control for the public interest, which aims to secure and promote ‘quality’ in the built environment. Design control is primarily implemented by locally employed planning professionals with political oversight, and independent design review panels, staffed predominantly by design professionals. Design control has a lengthy and complex history, with the concept of ‘design’ offering a range of challenges for a regulatory system of governance. A simultaneously creative and emotive discipline, architectural design is a difficult issue to regulate objectively or consistently, often leading to policy that is regarded highly discretionary and flexible. This makes regulatory outcomes difficult to predict, as approaches undertaken by the ‘agents of control’ can vary according to the individual. The role of the design controller is therefore central, tasked with the responsibility of interpreting design policy and guidance, appraising design quality and passing professional judgment. However, little is really known about what influences the way design controllers approach their task, providing a ‘veil’ over design control, shrouding the basis of their decisions. This research engaged directly with the attitudes and perceptions of design controllers in the UK, lifting this ‘veil’. Using in-depth interviews and Q-Methodology, the thesis explores this hidden element of control, revealing a number of key differences in how controllers approach and implement policy and guidance, conceptualise design quality, and rationalise their evaluations and judgments. The research develops a conceptual framework for agency in design control – this consists of six variables (Regulation; Discretion; Skills; Design Quality; Aesthetics; and Evaluation) and it is suggested that this could act as a ‘heuristic’ instrument for UK controllers, prompting more reflexivity in relation to evaluating their own position, approaches, and attitudes, leading to better practice and increased transparency of control decisions.
Resumo:
This paper presents new 500 year interval palaeogeographic models for Britain, Ireland and the North West French coast from 11000 cal. BP to present. These models are used to calculate the varying rates of inundation for different geographical zones over the study period. This allows for consideration of the differential impact that Holocene sea-level rise had across space and time, and on past societies. In turn, consideration of the limitations of the models helps to foreground profitable areas for future research.
Resumo:
Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multi-model-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e.g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.
Resumo:
The implications of polar cap expansions, contractions and movements for empirical models of high-latitude plasma convection are examined. Some of these models have been generated by directly averaging flow measurements from large numbers of satellite passes or radar scans; others have employed more complex means to combine data taken at different times into large-scale patterns of flow. In all cases, the models have implicitly adopted the assumption that the polar cap is in steady state: they have all characterized the ionospheric flow in terms of the prevailing conditions (e.g. the interplanetary magnetic field and/or some index of terrestrial magnetic activity) without allowance for their history. On long enough time scales, the polar cap is indeed in steady state but on time scales shorter than a few hours it is not and can oscillate in size and position. As a result, the method used to combine the data can influence the nature of the convection reversal boundary and the transpolar voltage in the derived model. This paper discusses a variety of effects due to time-dependence in relation to some ionospheric convection models which are widely applied. The effects are shown to be varied and to depend upon the procedure adopted to compile the model.
Resumo:
In this paper, Bond Graphs are employed to develop a novel mathematical model of conventional switched-mode DC-DC converters valid for both continuous and discontinuous conduction modes. A unique causality bond graph model of hybrid models is suggested with the operation of the switch and the diode to be represented by a Modulated Transformer with a binary input and a resistor with fixed conductance causality. The operation of the diode is controlled using an if-then function within the model. The extracted hybrid model is implemented on a Boost and Buck converter with their operations to change from CCM to DCM and to return to CCM. The vector fields of the models show validity in a wide operation area and comparison with the simulation of the converters using PSPICE reveals high accuracy of the proposed model, with the Normalised Root Means Square Error and the Maximum Absolute Error remaining adequately low. The model is also experimentally tested on a Buck topology.
Resumo:
Cognitive models of obsessive compulsive disorder (OCD) have been influential in understanding and treating the disorder in adults. Cognitive models may also be applicable to children and adolescents and would have important implications for treatment. The aim of this systematic review was to evaluate research that examined the applicability of the cognitive model of OCD to children and adolescents. Inclusion criteria were set broadly but most studies identified included data regarding responsibility appraisals, thought-action fusion or meta-cognitive models of OCD in children or adolescents. Eleven studies were identified in a systematic literature search. Seven studies were with non clinical samples, and 10 studies were cross-sectional. Only one study did not support cognitive models of OCD in children and adolescents and this was with a clinical sample and was the only experimental study. Overall, the results strongly supported the applicability of cognitive models of OCD to children and young people. There were, however, clear gaps in the literature. Future research should include experimental studies, clinical groups, and should test which of the different models provide more explanatory power.
Resumo:
The contraction of a species’ distribution range, which results from the extirpation of local populations, generally precedes its extinction. Therefore, understanding drivers of range contraction is important for conservation and management. Although there are many processes that can potentially lead to local extirpation and range contraction, three main null models have been proposed: demographic, contagion, and refuge. The first two models postulate that the probability of local extirpation for a given area depends on its relative position within the range; but these models generate distinct spatial predictions because they assume either a ubiquitous (demographic) or a clinal (contagion) distribution of threats. The third model (refuge) postulates that extirpations are determined by the intensity of human impacts, leading to heterogeneous spatial predictions potentially compatible with those made by the other two null models. A few previous studies have explored the generality of some of these null models, but we present here the first comprehensive evaluation of all three models. Using descriptive indices and regression analyses we contrast the predictions made by each of the null models using empirical spatial data describing range contraction in 386 terrestrial vertebrates (mammals, birds, amphibians, and reptiles) distributed across the World. Observed contraction patterns do not consistently conform to the predictions of any of the three models, suggesting that these may not be adequate null models to evaluate range contraction dynamics among terrestrial vertebrates. Instead, our results support alternative null models that account for both relative position and intensity of human impacts. These new models provide a better multifactorial baseline to describe range contraction patterns in vertebrates. This general baseline can be used to explore how additional factors influence contraction, and ultimately extinction for particular areas or species as well as to predict future changes in light of current and new threats.
Resumo:
The determination of the amount of sample units that will compose the sample express the optimization of the workforce, and reduce errors inherent in the report of recommendation and evaluation of soil fertility. This study aimed to determine in three systems use and soil management, the numbers of units samples design, needed to form the composed sample, for evaluation of soil fertility. It was concluded that the number of sample units needed to compose the composed sample to determination the attributes of organic matter, pH, P, K, Ca, Mg, Al and H+Al and base saturation of soil vary by use and soil management and error acceptable to the mean estimate. For the same depth of collected, increasing the number of sample units, reduced the percentage error in estimating the average, allowing the recommendation of 14, 14 and 11 sample in management with native vegetation, pasture cultivation and corn, respectively, for a error 20% on the mean estimate.
Resumo:
We construct and compare in this work a variety of simple models for strange stars, namely, hypothetical self-bound objects made of a cold stable version of the quark-gluon plasma. Exact, quasi-exact and numerical models are examined to find the most economical description for these objects. A simple and successful parametrization of them is given in terms of the central density, and the differences among the models are explicitly shown and discussed. In particular, we present a model starting with a Gaussian ansatz for the density profile that provides a very accurate and almost complete analytical integration of the problem, modulo a small difference for one of the metric potentials.