994 resultados para 105-646B
Resumo:
Coherently moving flocks of birds, beasts, or bacteria are examples of living matter with spontaneous orientational order. How do these systems differ from thermal equilibrium systems with such liquid crystalline order? Working with a fluidized monolayer of macroscopic rods in the nematic liquid crystalline phase, we find giant number fluctuations consistent with a standard deviation growing linearly with the mean, in contrast to any situation where the central limit theorem applies. These fluctuations are long-lived, decaying only as a logarithmic function of time. This shows that flocking, coherent motion, and large-scale inhomogeneity can appear in a system in which particles do not communicate except by contact.
Resumo:
Soft tissue sarcomas (STS) are rare tumors of soft tissue occurring most frequently in the extremities. Modern treatment of extremity STS is based on limb-sparing surgery combined with radiotherapy. To prevent local recurrence, a healthy tissue margin of 2.5 cm around the resected tumor is required. This results in large defects of soft tissue and bone, necessitating the use of reconstructive surgery to achieve wound closure. When local or pedicled soft tissue flaps are unavailable, reconstruction with free flaps is used. Free flaps are elevated at a distant site, and have their blood flow restored at the recipient site through microvascular anastomosis. When limb-sparing surgery is made impossible, amputation is the only option. Proximal amputation such as forequarter amputation (FQA) causes considerable morbidity, but is nevertheless warranted for carefully selected patients for cure or palliation. 116 patients treated in 1985 - 2006 were included in the study. Of these, 93 patients treated with limb-sparing surgery and microvascular reconstructive surgery after resection of extremity STS. 25 patients who underwent FQA were also included. Patients were identified and their medical records retrospectively reviewed. In all, 105 free flap procedures were performed for 103 patients. A total of 95 curatively treated STS patients were included in survival analysis. The latissimus dorsi, used in 56% of cases, was the most frequently used free flap. Free flap success rate was 96%. There were 9% microvascular anastomosis complications and 15% wound complications. For curatively treated STS patients, local recurrence-free survival at 5 years was 73.1%, metastasis-free survival 58.3%, and overall disease-specific survival 68.9%. Functional results were good, with 75% of patients regaining normal or near-normal function after lower extremity, and 55% after upper extremity STS resection. Among curatively treated forequarter amputees, 5-year disease-free survival was 44%. In the palliatively treated group median time until disease death was 14 months. Microvascular reconstruction after extremity soft tissue sarcoma resection is safe and reliable, and produces well-healing wounds allowing early oncological treatment. Oncological outcome after these procedures is comparable to that of other extremity sarcoma patients. Functional results are generally good. Forequarter amputation is a useful treatment option for soft tissue tumors of the shoulder girdle and proximal upper extremity. When free flap coverage of extended forequarter amputation is required, the preferable flap is a fillet flap from the amputated extremity. Acceptable oncological outcome is achieved for curatively treated FQA patients. In the palliatively treated patient considerable periods of increased quality of life can be achieved.
Resumo:
Background: Brachial plexus birth palsy (BPBP) most often occurs as a result of foetal-maternal disproportion. The C5 and C6 nerve roots of the brachial plexus are most frequently affected. In contrast, roots from the C7 to Th1 that result in total injury together with C5 and C6 injury, are affected in fewer than half of the patients. BPBP was first described by Smellie in 1764. Erb published his classical description of the injury in 1874 and his name became linked with the paralysis that is associated with upper root injury. Since then, early results of brachial plexus surgery have been reasonably well documented. However, from a clinical point of view not all primary results are maintained and there is also a need for later follow-up results. In addition most of the studies that are published emanate from highly specialized clinics and no nation wide epidemiological reports are available. One of the plexus injuries is the avulsion type, in which the nerve root or roots are ruptured at the neural cord. It has been speculated whether this might cause injury to the whole neural system or whether shoulder asymmetry and upper limb inequality results in postural deformities of the spine. Alternatively, avulsion could manifest as other signs and symptoms of the whole musculoskeletal system. In addition, there is no available information covering activities of daily living after obstetric brachial plexus surgery. Patients and methods: This was a population-based cross-sectional study on all patients who had undergone brachial plexus surgery with at least 5 years of follow-up. An incidence of 3.05/1000 for BPBP was obtained from the registers for this study period. A total of 1706 BPBP patients needing hospital treatment out of 1 717 057 newborns were registered in Finland between 1971 and 1997 inclusive. Of these BPBP patients, 124 (7.3%) underwent brachial plexus surgery at a mean age of 2.8 months (range: 0.4―13.2 months). Surgery was most often performed by direct neuroraphy after neuroma resection (53%). Depending on the phase of the study, 105 to 112 patients (85-90%) participated in a clinical and radiological follow-up assessment. The mean follow up time exceeded 13 years (range: 5.0―31.5 years). Functional status of the upper extremity was evaluated using Mallet, Gilbert and Raimondi scales. Isometric strength of the upper limb, sensation of the hand and stereognosis were evaluated for both the affected and unaffected sides then the differences and their ratios were calculated and recorded. In addition to the upper extremity, assessment of the spine and lower extremities were performed. Activities of daily living (ADL), participation in normal physical activities, and the use of physiotherapy and occupational therapy were recorded in a questionnaire. Results: The unaffected limb functioned as the dominant hand in all, except four patients. The mean length of the affected upper limb was 6 cm (range: 1-13.5 cm) shorter in 106 (95%) patients. Shoulder function was recorded as a mean Mallet score of 3 (range: 2―4) which was moderate. Both elbow function and hand function were good. The mean Gilbert elbow scale value was 3 (range: -1―5) and the mean Raimondi hand scale was 4 (range:1―5). One-third of the patients experienced pain in the affected limb including all those patients (n=9) who had clavicular non-union resulting from surgery. A total of 61 patients (57%) had an active shoulder external rotation of less than 0° and an active elbow extension deficiency was noted in 82 patients (77%) giving a mean of 26° (range: 5°―80°). In all, expect two patients, shoulder external rotation strength at a mean ratio 35% (range: 0―83%) and in all patients elbow flexion strength at a mean ratio of 41% (range: 0―79%) were impaired compared to the unaffected side. According to radiographs, incongruence of the glenohumeral joint was noted in 15 (16%) patients, whereas incongruence of the radiohumeral joint was found in 20 (21%) patients. Fine sensation was normal for 34/49 (69%) patients with C5-6 injury, for 15/31 (48%) with C5-7 and for only 8/25 (32%) of patients with total injury. Loss of protective sensation or absent sensation was noted in some palmar areas of the hand for 12/105 patients (11%). Normal stereognosis was recorded for 88/105 patients (84%). No significant inequalities in leg length were found and the incidence of structural scoliosis (1.7%) did not differ from that of the reference population. Nearly half of the patients (43%) had asynchronous motion of the upper limbs during gait, which was associated with impaired upper limb function. Data obtained from the completed questionnaires indicated that two thirds (63%) of the patients were satisfied with the functional outcome of the affected hand although one third of all patients needed help with ADL. Only a few patients were unable to participate in physical activities such as: bicycling, cross-country skiing or swimming. However, 71% of the patients reported problems related to the affected upper limb, such as muscle weakness and/or joint stiffness during the aforementioned activities. Incongruity of the radiohumeral joints, extent of the injury, avulsion type injury, age less than three months of age at the time of plexus surgery and inexperience of the surgeon was related to poor results as determined by multivariate analyses. Conclusions: Most of the patients had persistent sequelae, especially of shoulder function. Almost all measurements for the total injury group were poorer compared with those of the C5-6 type injury group. Most of the patients had asymmetry of the shoulder region and a shorter affected upper limb, which is a probable reason for having an abnormal gait. However, BPBP did not have an effect on normal growth of the lower extremities or the spine. Although, participation in physical activities was similar to that of the normal population, two-thirds of the patients reported problems. One-third of the patients needed help with ADL. During the period covered by this study, 7.3% BPBP of patients that needed hospital treatment had a brachial plexus operation, which amounts to fewer than 10 operations per year in Finland. It seems that better results of obstetric plexus surgery and more careful follow-up including opportunities for late reconstructive procedures will be expected, if the treatment is solely concentrated on by a few specialised teams.
Resumo:
We establish a unified model to explain Quasi-Periodic-Oscillation (QPO) observed from black hole and neutron star systems globally. This is based on the accreting systems thought to be damped harmonic oscillators with higher order nonlinearity. The model explains multiple properties parallelly independent of the nature of the compact object. It describes QPOs successfully for several compact sources. Based on it, we predict the spin frequency of the neutron star Sco X-1 and the specific angular momentum of black holes GRO J1655-40, GRS 1915+105.
Resumo:
Atmospheric aerosol particles affect the global climate as well as human health. In this thesis, formation of nanometer sized atmospheric aerosol particles and their subsequent growth was observed to occur all around the world. Typical formation rate of 3 nm particles at varied from 0.01 to 10 cm-3s-1. One order of magnitude higher formation rates were detected in urban environment. Highest formation rates up to 105 cm-3s-1 were detected in coastal areas and in industrial pollution plumes. Subsequent growth rates varied from 0.01 to 20 nm h-1. Smallest growth rates were observed in polar areas and the largest in the polluted urban environment. This was probably due to competition between growth by condensation and loss by coagulation. Observed growth rates were used in the calculation of a proxy condensable vapour concentration and its source rate in vastly different environments from pristine Antarctica to polluted India. Estimated concentrations varied only 2 orders of magnitude, but the source rates for the vapours varied up to 4 orders of magnitude. Highest source rates were in New Delhi and lowest were in the Antarctica. Indirect methods were applied to study the growth of freshly formed particles in the atmosphere. Also a newly developed Water Condensation Particle Counter, TSI 3785, was found to be a potential candidate to detect water solubility and thus indirectly composition of atmospheric ultra-fine particles. Based on indirect methods, the relative roles of sulphuric acid, non-volatile material and coagulation were investigated in rural Melpitz, Germany. Condensation of non-volatile material explained 20-40% and sulphuric acid the most of the remaining growth up to a point, when nucleation mode reached 10 to 20 nm in diameter. Coagulation contributed typically less than 5%. Furthermore, hygroscopicity measurements were applied to detect the contribution of water soluble and insoluble components in Athens. During more polluted days, the water soluble components contributed more to the growth. During less anthropogenic influence, non-soluble compounds explained a larger fraction of the growth. In addition, long range transport to a measurement station in Finland in a relatively polluted air mass was found to affect the hygroscopicity of the particles. This aging could have implications to cloud formation far away from the pollution sources.
Resumo:
Before the onset of the south Asian summer monsoon, sea surface temperature (SST) of the north Indian Ocean warms to 30–32°C. Climatological mean mixed layer depth in spring (March–May) is 10–20 m, and net surface heat flux (Q net ) is 80–100 W m−2 into the ocean. Previous work suggests that observed spring SST warming is small mainly because of (1) penetrative flux of solar radiation through the base of the mixed layer (Q pen ) and (2) advective cooling by upper ocean currents. We estimate the role of these two processes in SST evolution from a two-week Arabian Sea Monsoon Experiment process experiment in April–May 2005 in the southeastern Arabian Sea. The upper ocean is stratified by salinity and temperature, and mixed layer depth is shallow (6 to 12 m). Current speed at 2 m depth is high even under light winds. Currents within the mixed layer are quite distinct from those at 25 m. On subseasonal scales, SST warming is followed by rapid cooling, although the ocean gains heat at the surface: Q net is about 105 W m−2 in the warming phase and 25 W m−2 in the cooling phase; penetrative loss Q pen is 80 W m−2 and 70 W m−2. In the warming phase, SST rises mainly because of heat absorbed within the mixed layer, i.e., Q net minus Q pen ; Q pen reduces the rate of SST warming by a factor of 3. In the second phase, SST cools rapidly because (1) Q pen is larger than Q net and (2) advective cooling is ∼85 W m−2. A calculation using time-averaged heat fluxes and mixed layer depth suggests that diurnal variability of fluxes and upper ocean stratification tends to warm SST on subseasonal timescale. Buoy and satellite data suggest that a typical premonsoon intraseasonal cooling event occurs under clear skies when the ocean is gaining heat through the surface. In this respect, premonsoon SST cooling in the north Indian Ocean is different from that due to the Madden-Julian oscillation or monsoon intraseasonal oscillation.
Resumo:
Black hole X-ray binaries, binary systems where matter from a companion star is accreted by a stellar mass black hole, thereby releasing enormous amounts of gravitational energy converted into radiation, are seen as strong X-ray sources in the sky. As a black hole can only be detected via its interaction with its surroundings, these binary systems provide important evidence for the existence of black holes. There are now at least twenty cases where the measured mass of the X-ray emitting compact object in a binary exceeds the upper limit for a neutron star, thus inferring the presence of a black hole. These binary systems serve as excellent laboratories not only to study the physics of accretion but also to test predictions of general relativity in strongly curved space time. An understanding of the accretion flow onto these, the most compact objects in our Universe, is therefore of great importance to physics. We are only now slowly beginning to understand the spectra and variability observed in these X-ray sources. During the last decade, a framework has developed that provides an interpretation of the spectral evolution as a function of changes in the physics and geometry of the accretion flow driven by a variable accretion rate. This doctoral thesis presents studies of two black hole binary systems, Cygnus~X-1 and GRS~1915+105, plus the possible black hole candidate Cygnus~X-3, and the results from an attempt to interpret their observed properties within this emerging framework. The main result presented in this thesis is an interpretation of the spectral variability in the enigmatic source Cygnus~X-3, including the nature and accretion geometry of its so-called hard spectral state. The results suggest that the compact object in this source, which has not been uniquely identified as a black hole on the basis of standard mass measurements, is most probably a massive, ~30 Msun, black hole, and thus the most massive black hole observed in a binary in our Galaxy so far. In addition, results concerning a possible observation of limit-cycle variability in the microquasar GRS~1915+105 are presented as well as evidence of `mini-hysteresis' in the extreme hard state of Cygnus X-1.
Resumo:
The mechanism by which outflows and plausible jets are driven from black hole systems still remains observationally elusive. This notwithstanding, several observational evidences and deeper theoretical insights reveal that accretion and outflow/jet are strongly correlated. We model an advective disk-outflow coupled dynamics, incorporating explicitly the vertical flux. Inter-connecting dynamics of outflow andaccretion essentially upholds the conservation laws. We investigate the properties of the disk-outflow surface and its strong dependence on the rotation parameter of the black hole. The energetics of the disk outflow strongly depend on the mass, accretion rate, and spin of the black holes. The model clearly shows that the outflow power extracted from the disk increases strongly with the spin of the black hole, inferring that the power of the observed astrophysical jets has a proportional correspondence with the spin of the central object. In the case of blazars (BL Lacs and flat spectrum radio quasars, FSRQs), most of their emission are believed to be originated from their jets. It is observed that BL Lacs are relatively low luminous than FSRQs. The luminosity might be linked to the power of the jet, which in turn reflects that the nuclear regions of the BL Lac objects have a relatively low spinning black hole compared to that in the case of FSRQs. If extreme gravity is the source that powers strong outflows and jets, then the spin of the black hole, perhaps, might be the fundamental parameter to account for the observed astrophysical processes in an accretion powered system.
Resumo:
The pH dependent reversible association-dissociation reaction of α- and β-lipovitellins from egg yolk has been studied by 1H NMR and fluorescence probe methods. Increased mobility of the choline methyl groups has been demonstrated on dissociation. The lipid methylene resonance of β-lipovitellin shows clear doublet character suggesting that the fatty acid chains exist in distinct environments. The high field component increases with temperature but is suppressed on treatment with pronase, suggesting a significant role for proteins in maintaining the differences in lipid environments. 1-Anilino-8-naphthalene sulfonate has been shown to bind less effectively to the monomeric lipovitellins. This is in agreement with earlier results suggesting that dissociation may be accompanied by increased hydration and conformational changes.
Resumo:
This study views each protein structure as a network of noncovalent connections between amino acid side chains. Each amino acid in a protein structure is a node, and the strength of the noncovalent interactions between two amino acids is evaluated for edge determination. The protein structure graphs (PSGs) for 232 proteins have been constructed as a function of the cutoff of the amino acid interaction strength at a few carefully chosen values. Analysis of such PSGs constructed on the basis of edge weights has shown the following: 1), The PSGs exhibit a complex topological network behavior, which is dependent on the interaction cutoff chosen for PSG construction. 2), A transition is observed at a critical interaction cutoff, in all the proteins, as monitored by the size of the largest cluster (giant component) in the graph. Amazingly, this transition occurs within a narrow range of interaction cutoff for all the proteins, irrespective of the size or the fold topology. And 3), the amino acid preferences to be highly connected (hub frequency) have been evaluated as a function of the interaction cutoff. We observe that the aromatic residues along with arginine, histidine, and methionine act as strong hubs at high interaction cutoffs, whereas the hydrophobic leucine and isoleucine residues get added to these hubs at low interaction cutoffs, forming weak hubs. The hubs identified are found to play a role in bringing together different secondary structural elements in the tertiary structure of the proteins. They are also found to contribute to the additional stability of the thermophilic proteins when compared to their mesophilic counterparts and hence could be crucial for the folding and stability of the unique three-dimensional structure of proteins. Based on these results, we also predict a few residues in the thermophilic and mesophilic proteins that can be mutated to alter their thermal stability.
Resumo:
The crystal structure analysis of the cyclic biscystine peptide [Boc-Cys1-Ala2-Cys3-NHCH3]2 with two disulfide bridges confirms the antiparallel ?-sheet conformation for the molecule as proposed for the conformation in solution. The molecule has exact twofold rotation symmetry. The 22-membered ring contains two transannular NH ? OC hydrogen bonds and two additional NH ? OC bonds are formed at both ends of the molecule between the terminal (CH3)3COCO and NHCH3 groups. The antiparallel peptide strands are distorted from a regularly pleated sheet, caused mainly by the L-Ala residue in which ?=� 155° and ?= 162°. In the disulfide bridge C? (1)-C? (1)-S(1)-(3')-C?(3')-C?(3'), S�S = 2.030 Å, angles C? SS = 107° and 105°, and the torsional angles are �49, �104, +99, �81, �61°, respectively. The biscystine peptide crystallizes in space group C2 with a = 14.555(2) Ã…, b = 10.854(2) Ã…, c = 16.512(2)Ã…, and ?= 101.34(1) with one-half formula unit of C30H52N8O10S4· 2(CH3)2SO per asymmetric unit. Least-squares refinement of 1375 reflections observed with |F| > 3?(F) yielded an R factor of 7.2%.
Resumo:
Theoretical studies using density functional theory are carried out to understand the electronic structure and bonding and electronic properties of elemental beta-rhombohedral boron. The calculated band structure of ideal beta-rhombohedral boron (B-105) shows valence electron deficiency and depicts metallic behavior. This is in contrast to the experimental result that it is a semiconductor. To understand this ambiguity we discuss the electronic structure and bonding of this allotrope with cluster fragment approach using our recently proposed mno rule. This helps us to comprehend in greater detail the structure of B-105 and materials which are closely related to beta-rhombohedral boron. The molecular structures B12H12-2, B28H21+1, BeB27H21, LiB27H21-1, CB27H21+2, B57H36+3, Be3B54H36, and Li2CB54H36, and corresponding solids Li8Be3B102 and Li10CB102 are arrived at using these ideas and studied using first principles density functional theory calculations.
Resumo:
The crystal structure determination of three heptapeptides containing alpha-aminoisobutyryl (Aib) residues as a means of helix stabilization provides a high-resolution characterization of 6-->1 hydrogen-bonded conformations, reminiscent of helix-terminating structural features in proteins. The crystal parameters for the three peptides, Boc-Val-Aib-X-Aib-Ala-Aib-Y-OMe, where X and Y are Phe, Leu (I), Leu, Phe (II) and Leu, Leu (III) are: (I) space group P1, Z = 1, a = 9.903 A, b = 10.709 A, c = 11.969 A, alpha = 102.94 degrees, beta = 103.41 degrees, gamma = 92.72 degrees, R = 4.55%; (II) space group P21, Z = 2, a = 10.052 A, b = 17.653 A, c = 13.510 A, beta = 108.45 degrees, R = 4.49%; (III) space group P1, Z = 2 (two independent molecules IIIa and IIIb in the asymmetric unit), a = 10.833 A, b = 13.850 A, c = 16.928 A, alpha = 99.77 degrees, beta = 105.90 degrees, gamma = 90.64 degrees, R = 8.54%. In all cases the helices form 3(10)/alpha-helical (or 3(10)helical) structures, with helical columns formed by head-to-tail hydrogen bonding. The helices assemble in an all-parallel motif in crystals I and III and in an antiparallel motif in II. In the four crystallographically characterized molecules, I, II, IIIa and IIIb, Aib(6) adopts a left-handed helical (hL) conformation with positive phi, psi values, resulting in 6-->1 hydrogen-bond formation between Aib(2) CO and Leu(7)/Phe(7) NH groups. In addition a 4-->1 hydrogen bond is seen between Aib(3) CO and Aib(6) NH groups. This pattern of hydrogen bonding is often observed at the C-terminus of helices proteins, with the terminal pi-type turn being formed by four residues adopting the hRhRhRhL conformation.
Resumo:
The dodecapeptide Boc-(Ala-Leu-Aib)(4)-OMe crystallized with two independent helical molecules in a triclinic cell. The two molecules are very similar in conformation, with a 3(10)-helix turn at the N-terminus followed by an alpha-helix, except for an elongated N(7)...O(3) distance in both molecules. All the helices in the crystal pack in a parallel motif. Eleven water sites have been found in the head-to-tail region between the apolar helices that participate in peptide-water hydrogen bonds and a network of water-water hydrogen bonds. The crystal parameters are as follows: 2(C58H104N12O15)+ca. 10H(2)O, space group P1 with a = 12.946(2), b = 17.321(3), c = 20.465(4) Angstrom, alpha = 103.12(2), beta = 105.63(2), gamma = 107.50(2)degrees, Z = 2, R = 10.9% for 5152 data observed > 3 sigma(F), resolution 1.0 Angstrom. In contrast to the shorter sequences [Karle et al. (1988)Proc. Natl. Acad. Sci. USA 85, 299-303] and Boc-(Ala-Leu-Aib)(2)-OMe [Karle et al. (1989) Biopolymers 28, 773-781], no insertion of a water molecule into the helix is observed. However, the elongated N---O distance between Ala(7) NH and Aib(3) CO in both molecules (molecule A, 3.40 Angstrom; molecule B, 3.42 Angstrom) is indicative of an incipient break in the helices. (C) Munksgaard 1994.
Resumo:
The nature of binding of 7-nitrobenz-2-oxa-1,3-diazol-4-yl-colcemid (NBD-colcemid), an environment-sensitive fluorescent analogue of colchicine, to tubulin was tested. This article reports the first fluorometric study where two types of binding site of colchincine analogue on tubulin were detected. Binding of NBD-colcemid to one of these sites equilibrates slsowly. NBD-colcemid competes with colchicine for this site. Binding of NBD-colcemid to this site also causes inhibition of tubulin self-assembly. In contrast, NBD-colcemid binding to the other site is characterised by rapid equilibration and lack of competition with colchicine. Nevertheless, binding to this site is highly specific for the cholchicine nucleus, as alkyl-NBD analogues have no significant binding activity. Fast-reaction-kinetic studies gave 1.76 × 105 M–1 s–1 for the association and 0.79 s–1 for the dissociation rate constants for the binding of NBD-colcemid to the fast site of tubulin. The association rate constants for the two phases of the slow site are 0.016 × 10–4 M–1 s–1 and 3.5 × 10–4 M–1 respectively. These two sites may be related to the two sites of colchicine reported earlier, with binding characteristics altered by the increased hydrophobic nature of NBD-colcemid.