989 resultados para 1-Hydroxyarchaeols, unsaturated sn2, d13C


Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the cleaning of the HPC core surfaces from Hole 480 for photography, the material removed was conserved carefully in approximately 10 cm intervals (by K. Kelts); this material was made available to us in the hope that it would be possible to obtain oxygen isotope stratigraphy for the site. The samples were, of course, somewhat variable in size, but the majority were probably between 5 and 10 cm**3. Had this been a normal marine environment, such sample sizes would have contained abundant planktonic foraminifers together with a small number of benthics. However, this is clearly not the case, for many samples contained no foraminifers, whereas others contained more benthics than planktonics. Among the planktonic foraminifers the commonest species are Globigerina bulloides, Neogloboquadrina dutertrei, and N. pachyderma. A few samples contain a more normal fauna with Globigerinoides spp. and occasional Globorotalia spp. Sample 480-3-3, 20-30 cm contained Globigerina rubescens, isolated specimens of which were noted in a few other samples in Cores 3,4, and 5. This is a particularly solution-sensitive species; in the open Pacific it is only found widely distributed at horizons of exceptionally low carbonate dissolution, such as. the last glacial-to-interglacial transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aeolian and fluvial sediment transport to the Atlantic Ocean offshore Mauritania were reconstructed based on grain-size distributions of the carbonate-free silt fraction of three marine sediment records of Cap Timiris Canyon to monitor the climatic evolution of present-day arid north-western Africa. During the late Pleistocene, predominantly coarse-grained particles, which are interpreted as windborne dust, characterise glacial dry climate conditions with a low sea level and extended sand seas that reach onto the exposed continental shelf off Mauritania. Subsequent particle fining and the abrupt decrease in terrigenous supply are attributed to humid climate conditions and dune stabilisation on the adjacent African continent with the onset of the Holocene humid period. Indications for an ancient drainage system, which was discharging fluvial mud offshore via Cap Timiris Canyon, are provided by the finest end member for early to mid Holocene times. However, in comparison to the Senegal and Niger River further south, the river system connecting Cap Timiris Canyon with the Mauritanian hinterland was starved during the late Holocene and is non-discharging under present-day arid climate conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dominant processes determining biological structure in lakes at millennial timescales are complex. In this study, we used a multi-proxy approach to determine the relative importance of in-lake versus indirect processes on the Holocene development of an oligotrophic lake in SW Greenland (66.99°N, 50.97°W). A 14C and 210Pb-dated sediment core covering approximately 8500 years BP was analyzed for organic-inorganic carbon content, pigments, diatoms, chironomids, cladocerans, and stable isotopes (d13C, d18O). Relationships among the different proxies and a number of independent controlling variables (Holocene temperature, an isotope-inferred cooling period, and immigration of Betula nana into the catchment) were explored using redundancy analysis (RDA) independent of time. The main ecological trajectories in the lake biota were captured by ordination first axis sample scores (18-32% variance explained). The importance of the arrival of Betula (ca. 6500 years BP) into the catchment was indicated by a series of partial-constrained ordinations, uniquely explaining 12-17% of the variance in chironomids and up to 9% in pigments. Climate influences on lake biota were strongest during a short-lived cooling period (identified by altered stable isotopes) early in the development of the lake when all proxies changed rapidly, although only chironomids had a unique component (8% in a partial-RDA) explained by the cooling event. Holocene climate explained less variance than either catchment changes or biotic relationships. The sediment record at this site indicates the importance of catchment factors for lake development, the complexity of community trends even in relatively simple systems (invertebrates are the top predators in the lake) and the challenges of deriving palaeoclimate inferences from sediment records in low-Arctic freshwater lakes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oxygen and carbon isotope analyses show that the biserial forarniniferal genus Streptochilus, which was originally described from pelagic sediments on the Eauripik Rise and Ontong Java Plateau, lived deep in the upper water column within the oxygen minimum layer. The species of Streptochilus average from 4 to 19% of the foraminiferal assemblages in which benthic forms compose less than 1 or 2%. Specimens of Streptochilus are selectively dissolved when in contact with the bottom water mass. Their rapid evolutionary turnover of less than a few million years and their wide areal distribution in the equatorial Indo-Pacific are indicative of planktonic foraminifera. Aside from usefulness of the species of Streptochilus as stratigraphic indices, these Neogene biserial planktonic foraminifera are potential indices of paleoceanographic stratification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stable isotope ratios from tree rings and peatland mosses have become important proxies of past climate variations. We here compare recent stable carbon and oxygen isotope ratios in cellulose of tree rings from white spruce (Picea glauca), growing near the arctic tree line; and cellulose of Sphagnum fuscum stems, growing in a hummock of a subarctic peatland, in west-central Canada. Results show that carbon isotopes in S. fuscum correlate significantly with July temperatures over the past ~20 yr. The oxygen isotopes correlate with both summer temperature and precipitation. Analyses of the tree-ring isotopes revealed summer temperatures to be the main controlling factor for carbon isotope variations, whereas tree-ring oxygen isotope ratios are controlled by a combination of spring temperatures and precipitation totals. We also explore the potential of combining high-frequency (annual) climate signals derived from long tree-ring series with low-frequency (decadal to centennial) climate signals derived from the moss remains in peat deposits. This cross-archive comparison revealed no association between the oxygen isotopes, which likely results from the varying sensitivity of the archives to different seasons. For the carbon isotopes, common variance could be achieved through adjustments of the Sphagnum age model within dating error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sulfur content of one rhyolite and four dacite conglomerates was found to be low - from 9 to 97 ppm - similar to that of Quaternary andesites and basalts of the Japanese Islands. However, the d34S values of these samples are unexpectedly high - +23 to +35 per mill - relative to troilite from the Canon Diablo meteorite. The sulfide/sulfate ratios vary among the five samples from 0 to 13. No significant isotope fractionation seems to exist between sulfate and sulfide sulfurs. Carbon in these samples is predominantly in the form of carbonate (and probably CO2). It ranges in concentration from 128 to 721 ppm and in d13C from -2.5 to -20.7 per mill relative to PDB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present evidence that the characteristic chemical signature (based on coupled benthic foraminiferal Cd/Ca and d13C) of Antarctic Intermediate waters (AAIW) penetrated throughout the intermediate depths of the Atlantic basin to the high-latitude North Atlantic during the abrupt cooling events of the last deglaciation: Heinrich 1 and the Younger Dryas. AAIW may play the dynamic counterpart to the "bipolar seesaw" when near-freezing salty bottom waters from the Antarctic (AABW) sluggishly ventilate the deep ocean. Our data reinforce the concept that interglacial circulation is stabilized by salinity feedbacks between salty northern sourced deep waters (NADW) and fresh southern sourced waters (AABW and AAIW). Further, the glacial ocean may be susceptible to the more finely balanced relative densities of NADW and AAIW, due to either freshwater input or a reversal of the salinity gradient, such that the ocean is poised for NADW collapse via a negative salinity feedback. The unstable climate of the glacial period and its termination may arise from the closer competition for ubiquity at intermediate depths between northern and southern sourced intermediate waters.