995 resultados para ð18O


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first step for the application of stable isotope analyses of ice wedges for the correct paleoclimatic reconstruction supposes the study of the isotopic composition of modern ice wedges and their relationship with the isotopic composition of modern precipitation. The purpose of this research is to present, to analyze and to discuss new data on isotopic composition (d18O, dD, 3H) of modern ice wedges obtained in the Laptev Sea region in 1998-99. Investigations were carried out at two sites: on Bykovsky Peninsula in 1998 and on Bol'shoy Lyakhovsky Island in 1999 and were based on the combined application of both tritium CH) and stable isotope (d18O, dD) analyses. Tritium analyses of the atmospheric precipitation collected during two field seasons show seasonal variations: high tritium concentration in snow (to a maximum of 207 TU) and low values of tritium concentration (<20 TU) in rain. High tritium concentrations are also observed in the surface water, in suprapermafrost ground waters, and in the upper part of permafrost. High tritium concentrations range between 30-40 TU and 750 TU in the studied modern ice wedges (active ice wedges), which let us believe that they are of modern growth. Such high tritium concentrations in ice wedges can not be associated with old thermonuclear tritium because of the radioactive decay. High tritium concentrations found in the snow cover in 1998/99, in the active layer and in the upper part of permafrost give evidence of modern (probably the last decade) technogenic tritium arrival from the atmosphere on to the Earth surface in the region. The comparison of the isotopic composition (d18O, dD and d-excess) of active ice wedges and modern winter precipitation in both sites shows: 1) the isotopic composition of snow correlates linearly with a slope close to 8.0 and parallel to the GMWL at both sites; 2) the mean isotopic composition of active ice wedges on Bykovsky Peninsula is in good agreement with the mean isotopic composition of modern snow; 3) the isotopic composition of active ice wedges and snow on Bol'shoy Lyakhovsky Island are considerably different. There are low values of d-excess in all studied active ice wedges (mean value is about 4.8 per mil), while in snow, the mean value of d-excess is about 9.5 per mil. Possible reasons for this gap are the following: 1) the modification of the isotopic composition in snow during the spring period; 2) changes in the isotopic composition of ice wedges due to the process of ice sublimation in open frost cracks during the cold period; 3) mixing of snowmelt water with different types of surface water during the spring period; 4) different moisture source regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In wide areas of Northern Siberia, glaciers have been absent since the Late Pleistocene. Therefore, ground ice and especially ice wedges are used as archives for paleoclimatic studies. In the present study, carried out on the Bykovsky Peninsula, eastern Lena Delta, we were able to distinguish ice wedges of different genetic units by means of oxygen and hydrogen isotopes. The results obtained by this study on the Ice Complex, a peculiar periglacial phenomenon, allowed the reconstruction of the climate history with a subdivision of a period of very cold winters (60-55 ka), followed by a long stable period of cold winter temperatures (50-24 ka), Between 20 ka and I I ka, climate warming is indicated in stable isotope compositions, most probably after the Late Glacial Maximum. At that time, a change of the marine source of the precipitation from a more humid source to the present North Atlantic source region was assumed. For the Ice Complex, a continuous age-height relationship was established, indicating syngenetic vertical ice wedge growth and sediment accumulation rates of 0.7 m/ky. During the Holocene optimum, ice wedge growth was probably limited due to the extensive formation of lacustrine environments. Holocene ice wedges in thermokarst depressions (alases) and thermoerosional valleys (logs) were formed after climate deterioration from about 4.5 ka until the present. Winter temperatures were warmer at this time as compared to the cooler Pleistocene. Migration of bound water between ice wedges and segregated ice may have altered the isotopic composition of old ice wedges. The presence of ice wedges as diagnostic features for permafrost conditions since 60 ka, implies that a large glacier extending over the Laptev Sea shelf did not exist. For the remote non-glaciated areas of Northern Siberia, ice wedges were established as a powerful climate archive.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interstitial waters and sediments from DSDP sites 288 and 289 contain information on the chemistry and diagenesis of carbonate in deep-sea sediments and on the role of volcanic matter alteration processes. Sr/Ca ratios are species dependent in unaltered foraminifera from site 289 and atom ratios (0.0012-0.0016) exceed those predicted by distribution coefficent data (~0.0004). During diagenesis Sr/Ca ratios of carbonates decrease and reach the theoretical distribution at a depth which is identical to the depth of Sr isotopic equilibration, where 87Sr/86Sr ratios of interstitial waters and carbonates converge. Mg/Ca ratios in the carbonates do not increase with depth as found in some other DSDP sites, possibly because of diagenetic re-equilibration with interstitial waters showing decreasing Mg(2+)/Ca(2+) ratios with depth due to Ca input and Mg removal by alteration of volcanic matter. Interstitial 18O/16O ratios increase with depth at site 289 to d18O = 0.67? (SMOW), reflecting carbonate recrystallization at elevated temperatures (>/= 20°C), the first recorded evidence of this effect in interstitial waters. Interstitial Sr2+ concentrations reach high levels, up to 1 mM, chiefly because of carbonate recrystallization. However, 87Sr/86Sr ratios decrease from 0.7092 to less than 0.7078, lower than for contemporaneous sea water, showing that there is a volcanic input of strontium at depth. This volcanic component is recorded in the Sr isotopic composition of recrystallized calcites. Isotopic compositions of the unrecrystallized calcites suggests that the rate of increase of the 87Sr/86Sr ratio of sea water with time has been faster since 3 my ago than in the preceding 13 my.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The variations in major elements and isotope composition (87Sr/86Sr, delta18O, deltaD) of interstitial waters in Leg 104 sediments is most probably caused by the alteration of volcanic matter. A reaction scheme where volcanic glass reacts with pore-water magnesium and potassium to form trioctahedral smectite, phillipsite, and chert is proposed. Model calculations demonstrate that the pore waters may evolve their negative 6180 signatures without recourse to unreasonably large amounts of volcanic detritus or external sources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transition from the extreme global warmth of the early Eocene 'greenhouse' climate ~55 million years ago to the present glaciated state is one of the most prominent changes in Earth's climatic evolution. It is widely accepted that large ice sheets first appeared on Antarctica ~34 million years ago, coincident with decreasing atmospheric carbon dioxide concentrations and a deepening of the calcite compensation depth in the world's oceans, and that glaciation in the Northern Hemisphere began much later, between 10 and 6 million years ago. Here we present records of sediment and foraminiferal geochemistry covering the greenhouse-icehouse climate transition. We report evidence for synchronous deepening and subsequent oscillations in the calcite compensation depth in the tropical Pacific and South Atlantic oceans from ~42 million years ago, with a permanent deepening 34 million years ago. The most prominent variations in the calcite compensation depth coincide with changes in seawater oxygen isotope ratios of up to 1.5 per mil, suggesting a lowering of global sea level through significant storage of ice in both hemispheres by at least 100 to 125 metres. Variations in benthic carbon isotope ratios of up to ~1.4 per mil occurred at the same time, indicating large changes in carbon cycling. We suggest that the greenhouse-icehouse transition was closely coupled to the evolution of atmospheric carbon dioxide, and that negative carbon cycle feedbacks may have prevented the permanent establishment of large ice sheets earlier than 34 million years ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The concentration of dissolved Sr and the distribution of 87Sr/86Sr isotope ratios in Leg 113 interstitial waters may be interpreted in terms of mixing of Sr from four different reservoirs: indigenous seawater, marine carbonate minerals, and basaltic and siliceous detrital material. The input to the pore water from these reservoirs is determined by the reactivity of the reservoir rather than its size. The presence of strontium derived from siliceous detrital material is unequivocally demonstrated in the pore waters of the hemipelagic deposits, and is also significant in the calcareous Maud Rise sediments due to the unusually low degree of carbonate recrystallization. Also, alteration of basic volcanic material is important at several sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A conceptual scheme for the transition from winter to spring is developed for a small Arctic estuary (Churchill River, Hudson Bay) using hydrological, meteorological and oceanographic data together with models of the landfast ice. Observations within the Churchill River estuary and away from the direct influence of the river plume (Button Bay), between March and May 2005, show that both sea ice (production and melt) and river water influence the region's freshwater budget. In Button Bay, ice production in the flaw lead or polynya of NW Hudson Bay result in salinization through winter until the end of March, followed by a gradual freshening of the water column through April-May. In the Churchill Estuary, conditions varied abruptly throughout winter-spring depending on the physical interaction among river discharge, the seasonal landfast ice, and the rubble zone along the seaward margin of the landfast ice. Until late May, the rubble zone partially impounded river discharge, influencing the surface salinity, stratification, flushing time, and distribution and abundance of nutrients in the estuary. The river discharge, in turn, advanced and enhanced sea ice ablation in the estuary by delivering sensible heat. Weak stratification, the supply of riverine nitrogen and silicate, and a relatively long flushing time (~6 days) in the period preceding melt may have briefly favoured phytoplankton production in the estuary when conditions were still poor in the surrounding coastal environment. However, in late May, the peak flow and breakdown of the ice-rubble zone around the estuary brought abrupt changes, including increased stratification and turbidity, reduced marine and freshwater nutrient supply, a shorter flushing time, and the release of the freshwater pool into the interior ocean. These conditions suppressed phytoplankton productivity while enhancing the inventory of particulate organic matter delivered by the river. The physical and biological changes observed in this study highlight the variability and instability of small frozen estuaries during winter-spring transition, which implies sensitivity to climate change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Central American Volcanic Arc (CAVA) has been the subject of intensive research over the past few years, leading to a variety of distinct models for the origin of CAVA lavas with various source components. We present a new model for the NW Central American Volcanic Arc based on a comprehensive new geochemical data set (major and trace element and Sr-Nd-Pb-Hf-O isotope ratios) of mafic volcanic front (VF), behind the volcanic front (BVF) and back-arc (BA) lava and tephra samples from NW Nicaragua, Honduras, El Salvador and Guatemala. Additionally we present data on subducting Cocos Plate sediments (from DSDP Leg 67 Sites 495 and 499) and igneous oceanic crust (from DSDP Leg 67 Site 495), and Guatemalan (Chortis Block) granitic and metamorphic continental basement. We observe systematic variations in trace element and isotopic compositions both along and across the arc. The data require at least three different endmembers for the volcanism in NW Central America. (1) The NW Nicaragua VF lavas require an endmember with very high Ba/(La, Th) and U/Th, relatively radiogenic Sr, Nd and Hf but unradiogenic Pb and low d18O, reflecting a largely serpentinite-derived fluid/hydrous melt flux from the subducting slab into a depleted N-MORB type of mantle wedge. (2) The Guatemala VF and BVF mafic lavas require an enriched endmember with low Ba/(La, Th), U/Th, high d18O and radiogenic Sr and Pb but unradiogenic Nd and Hf isotope ratios. Correlations of Hf with both Nd and Pb isotopic compositions are not consistent with this endmember being subducted sediments. Granitic samples from the Chiquimula Plutonic Complex in Guatemala have the appropriate isotopic composition to serve as this endmember, but the large amounts of assimilation required to explain the isotope data are not consistent with the basaltic compositions of the volcanic rocks. In addition, mixing regressions on Nd vs. Hf and the Sr and O isotope plots do not go through the data. Therefore, we propose that this endmember could represent pyroxenites in the lithosphere (mantle and possibly lower crust), derived from parental magmas for the plutonic rocks. (3) The Honduras and Caribbean BA lavas define an isotopically depleted endmember (with unradiogenic Sr but radiogenic Nd, Hf and Pb isotope ratios), having OIB-like major and trace element compositions (e.g. low Ba/(La, Th) and U/Th, high La/Yb). This endmember is possibly derived from melting of young, recycled oceanic crust in the asthenosphere upwelling in the back-arc. Mixing between these three endmember types of magmas can explain the observed systematic geochemical variations along and across the NW Central American Arc.