923 resultados para (Inter)subjectification
Resumo:
INTRODUCTION: We studied intra-individual and inter-individual variability of two online sedation monitors, BIS and Entropy, in volunteers under sedation. METHODS: Ten healthy volunteers were sedated in a stepwise manner with doses of either midazolam and remifentanil or dexmedetomidine and remifentanil. One week later the procedure was repeated with the remaining drug combination. The doses were adjusted to achieve three different sedation levels (Ramsay Scores 2, 3 and 4) and controlled by a computer-driven drug-delivery system to maintain stable plasma concentrations of the drugs. At each level of sedation, BIS and Entropy (response entropy and state entropy) values were recorded for 20 minutes. Baseline recordings were obtained before the sedative medications were administered. RESULTS: Both inter-individual and intra-individual variability increased as the sedation level deepened. Entropy values showed greater variability than BIS(R) values, and the variability was greater during dexmedetomidine/remifentanil sedation than during midazolam/remifentanil sedation. CONCLUSIONS: The large intra-individual and inter-individual variability of BIS and Entropy values in sedated volunteers makes the determination of sedation levels by processed electroencephalogram (EEG) variables impossible. Reports in the literature which draw conclusions based on processed EEG variables obtained from sedated intensive care unit (ICU) patients may be inaccurate due to this variability. TRIAL REGISTRATION: clinicaltrials.gov Nr. NCT00641563.
Resumo:
ims: Periodic leg movements in sleep (PLMS) are a frequent finding in polysomnography. Most patients with restless legs syndrome (RLS) display PLMS. However, since PLMS are also often recorded in healthy elderly subjects, the clinical significance of PLMS is still discussed controversially. Leg movements are seen concurrently with arousals in obstructive sleep apnoea (OSA) may also appear periodically. Quantitative assessment of the periodicity of LM/PLM as measured by inter movement intervals (IMI) is difficult. This is mainly due to influencing factors like sleep architecture and sleep stage, medication, inter and intra patient variability, the arbitrary amplitude and sequence criteria which tend to broaden the IMI distributions or make them even multi-modal. Methods: Here a statistical method is presented that enables eliminating such effects from the raw data before analysing the statistics of IMI. Rather than studying the absolute size of IMI (measured in seconds) we focus on the shape of their distribution (suitably normalized IMI). To this end we employ methods developed in Random Matrix Theory (RMT). Patients: The periodicity of leg movements (LM) of four patient groups (10 to 15 each) showing LM without PLMS (group 1), OSA without PLMS (group 2), PLMS and OSA (group 3) as well as PLMS without OSA (group 4) are compared. Results: The IMI of patients without PLMS (groups 1 and 2) and with PLMS (groups 3 and 4) are statistically different. In patients without PLMS the distribution of normalized IMI resembles closely the one of random events. In contrary IMI of PLMS patients show features of periodic systems (e.g. a pendulum) when studied in normalized manner. Conclusions: For quantifying PLMS periodicity proper normalization of the IMI is crucial. Without this procedure important features are hidden when grouping LM/PLM over whole nights or across patients. The clinical significance of PLMS might be eluded when properly separating random LM from LM that show features of periodic systems.
Resumo:
Um komplexe gesellschaftliche Probleme lösen zu können, sollte relevantes Wissen aus allen Bereichen genutzt werden. Welche Methoden eignen sich, um den Austausch von Wissen zwischen verschiedenen Akteursgruppen aus unterschiedlichen Wissenssystemen zu ermöglichen? Die AG Wissensaustausch der SAGUF (Schweizerische Akademische Gesellschaft für Umweltforschung und Ökologie) begibt sich auf die Suche nach Erfolgsfaktoren für den Wissensaustausch.