976 resultados para zirconium-rich master alloy
Resumo:
A systematic study of neutron-rich even-even Fe isotopes with a neutron number from 32 to 42 is carried out by using the projected shell model. Calculations are performed up to the spin I=20 state. Irregularities found in the yrast spectra and in B (E2) values are discussed in terms of neutron excitations to the high-j orbital g(9/2). Furthermore, the neutron two-quasiparticle structure of a low-K negative-parity band and the proton two-quasiparticle structure of a high-K positive-parity band are predicted to exist near the yrast region. Our study reveals a soft nature for the ground state of N approximate to 40 isotopes and emphasizes the important role of the neutron g(9/2) orbital in determining the structure properties for both low- and high-spin states in these nuclei.
Resumo:
The structure of neutron-rich Cr isotopes is systematically investigated by using the spherical shell model. The calculations reproduce well the known energy levels for the even-even Cr52-62 and odd-mass Cr53-59 nuclei, and predict a lowering of excitation energies around neutron number N = 40. The calculated B(E2; 2(1)(+) -> 0(1)(+)) systematics shows a pronounced collectivity around N = 40; a similar characteristic behavior has been suggested for Zn and Ge isotopes. Causes for the sudden drop of the 9/2(1)(+) energy in Cr-59 and the appearance of very low 0(2)(+) states around N = 40 are discussed. We also predict a new band with strong collectivity built on the 0(2)(+) state in the N = 40 isotope Cr-64.
Resumo:
In this paper, an investigation on the micro-structure of an Fe-base oxide-dispersion-strengthened (ODS) alloy irradiated with high-energy Ne-20 ions to different doses at a temperature around 0.5T(m) (T-m is the melting point of the alloy) is presented. Investigation with the transmission electron microscopy found that the accelerated growth of voids at grain-boundaries, which is usually a concern in conventional Fe-base alloys under conditions of inert-gas implantation, was not observed in the ODS alloy irradiated even to the highest dose (12000 at.ppm Ne). The reason is ascribed to the enhanced recombination of point defects and strong trapping of Ne atoms at the interfaces of the nano-scale oxide particles in grains. The study showed that ODS alloys have good resistance to the high-temperature inter-granular embrittlement due to inert-gas accumulation, exhibiting prominence of application in harsh situations of considerable helium production at elevated temperatures like in a fusion reactor.
Resumo:
Within the concept of the dinuclear system (DNS), a dynamical model is proposed for describing the formation of superheavy nuclei in complete fusion reactions by incorporating the coupling of the relative motion to the nucleon transfer process. The capture of two heavy colliding nuclei, the formation of the compound nucleus, and the de-excitation process are calculated by using an empirical coupled channel model, solving a master equation numerically and applying statistical theory, respectively. Evaporation residue excitation functions in cold fusion reactions are investigated systematically and compared with available experimental data. Maximal production cross sections of superheavy nuclei in cold fusion reactions with stable neutron-rich projectiles are obtained. Isotopic trends in the production of the superheavy elements Z=110, 112, 114, 116, 118, and 120 are analyzed systematically. Optimal combinations and the corresponding excitation energies are proposed.
Resumo:
The neutron-rich nucleus Li-11 is separated by the radioactive ion beam line RIBLL at HIRFL from the breakup of 50MeV/u C-13 on Be target. The total reaction cross sections for Li-11 at energies range from 25 to 45MeV/u on Si target have been measured by using the transmission method. The experimental data at high and low energies can be fitted well by Glauber model using two Gauss density distribution. The matter radius of Li-11 was also deduced.
Resumo:
By including the scalar isovector meson delta, we extend the relativistic mean field model and the one-boson exchange model of changing K-meson in the framework of Schaffner's relativistic mean field model. We re-consider the coupling constants for the interactions between the meson and the baryon and the interactions of the K meson with different mesons as well in various parameter sets. Using our model, we discuss the effective masses of K mesons in the hyperon-rich nuclear matter. We find that the density modification of the K meson mass in the strange nuclear matter is smaller than that in the pure nuclear matter. The influence of the scalar isovector meson 6 on the effective mass of kaon is rather evident. But the extent of the influence is different in different parameter sets.
Resumo:
The neutron-rich nucleus He-8 is selected by RIBLL from the breakup of 50MeV/u C-13 on be target at HIRFL. The 2n-removal and 4n-removal cross section of He-8 was measured by using the transmission method. The point that He-4 is He-8 core can be reduced from the experiment data via the Ogawa's theory.
Resumo:
We extend the Brueckner-Hartree-Fock (BHF) approach to include the three-body force (TBF) rearrangement contribution in calculating the neutron and proton single particle (s.p.) properties in isospin asymmetric nuclear matter. We investigate the TBF rearrangement effect on the momentum-dependence of neutron and proton s.p. potentials, the isospin splitting and especially its density dependence of the neutron and proton effective masses, and the isospin symmetry potential in neutron-rich nuclear matter by adopting the realistic Argonne V-18 two-body nucleon-nucleon interaction supplemented with a microscopic TBF. We find that at low densities, the TBF rearrangement effect is fairly weak, whereas the TBF induces a significant rearrangement effect on the s.p. properties at high densities and large momenta. The TBF rearrangement contribution to s.p. potential is shown to be repulsive, and it reduces considerably the attraction of the BHF s.p. potential. The repulsion from the TBF rearrangement turns out to be strongly momentum dependent at high densities and high momenta. As a consequence, it enhances remarkably the momentum dependence of the proton and neutron s.p. potentials and reduces the neutron and proton effective masses. At low densities, the TBF rearrangement effect on symmetry potential is almost negligible, while at high densities, it enlarges sizably the symmetry potential. At high enough densities, it may even change the high-momentum behavior of symmetry potential. In both cases, with and without including the TBF rearrangement contribution, the predicted neutron effective mass is larger than the proton one in neutron-rich matter within the BHF framework; i.e., the predicted isospin splitting of the proton and neutron effective masses in neutron-rich matter is such that m(n)(*)>= m(p)(*), in agreement with the recent Dirac-BHF predictions. The TBF rearrangement contribution reduces remarkably the magnitude of the proton-neutron effective mass splitting at high densities. At high enough densities, inclusion of the TBF rearrangement contribution even suppresses almost completely the effective mass splitting.
Resumo:
Within the Boltzmann-Langevin equation, the neutron cluster production cross sections in the reactions induced by Be-14, He-8, He-6, Li-11, B-17, Be-11, C-19 on C-12 at 35MeV/u were studied. The experimental data for (4)n production cross section from Be-14+C-12 at 35MeV/u can be reproduced. It is found that the production cross section of neutron cluster is large in the reaction that the projectile has more halo nucleons. And the projectiles with big mass number are easy to produce the neutron cluster, when they have the same number of halo nucleons. The neutron cluster is probably mainly from the halo nucleons of projectile.
Resumo:
We investigate the effect of the calar-isovector delta-meson field on the equation of state (EOS) and composition of hyperonic neutron star matter, and the properties of hyperonic neutron stars within the frame work of the relativistic mean field theory. The influence of the delta-field turns out to be quite different and generally weaker for hyperonic neutron star matter as compared to that for npe mu neutron star matter. We find that inclusion of the delta-field enhances the strangeness content slightly and consequently moderately softens the EOS of neutron star matter in its hyperonic phase. As for the composition of hyperonic star matter, the effect of the delta-field is shown to shift the onset of the negatively-charged (positively-charged) hyperons to slightly lower (higher) densities and to enhance (reduce) their abundances. The influence of the delta-field on the maximum mass of hyperonic neutron stars is found to be fairly weak, where as inclusion of the delta-field turns out to enhance sizably both the radii and the moments of inertia of neutron stars with given masses. It is also shown that the effects of the delta-field on the properties of hyperonic neutron stars remain similar in the case of switching off the Sigma hyperons.
Resumo:
利用Nd:YAG激光器输出的532nm激光束对位于空气中的标准变形铝合金样品进行烧蚀产生了激光诱导等离子体.对测量的230—440nm波长范围的光谱进行了谱线标定,同时基于自由定标方法对样品成分进行了定量分析,确定了样品中的元素含量.分析结果与标准值具有较好的一致性.
Resumo:
Laser-induced breakdown plasma is produced by using Q-switched Nd: YAG laser operating at 532 nm, which interacts with the Al alloy sample target in air. The spectral lines in the 230-440 nm wavelength range have been identified, and based on the calibration-free method, the mass concentration of Al alloy are obtained, which is in good agreement with the standard value of the sample.
Resumo:
The nuclear symmetry energy E-sym(rho) is the most uncertain part of the Equation of State (EOS) of dense neutron-rich nuclear matter. In this talk, we discuss the underlying physics responsible for the uncertain E-sym(rho) especially at supra-saturation densities, the circumstantial evidence for a super-soft E-sym(rho) from analyzing pi(-)/pi(+) ratio in relativistic heavy-ion collisions and its impacts on astrophysics and cosmology.