917 resultados para virus protein
Resumo:
HIV-1 integrase, the viral enzyme responsible for provirus integration into the host genome, can be actively degraded by the ubiquitin-proteasome pathway. Here, we identify von Hippel-Lindau binding protein 1(VBP1), a subunit of the prefoldin chaperone, as an integrase cellular binding protein that bridges interaction between integrase and the cullin2 (Cul2)-based von Hippel-Lindau (VHL) ubiquitin ligase. We demonstrate that VBP1 and Cul2/VHL are required for proper HIV-1 expression at a step between integrase-dependent proviral integration into the host genome and transcription of viral genes. Using both an siRNA approach and Cul2/VHL mutant cells, we show that VBP1 and the Cul2/VHL ligase cooperate in the efficient polyubiquitylation of integrase and its subsequent proteasome-mediated degradation. Results presented here support a role for integrase degradation by the prefoldin-VHL-proteasome pathway in the integration-transcription transition of the viral replication cycle.
Resumo:
Abstract : Adverse drug reactions (ADRs) are undesirable effects caused after administration of a single dose or prolonged administration of drug or result from the combination of two or more drugs. Idiosyncratic drug reaction (IDR) is an adverse reaction that does not occur in most patients treated with a drug and does not involve the therapeutic effect of the drug. IDRs are unpredictable and often life-threatening. Idiosyncratic reaction is dependent on drug chemical characteristics or individual immunological response. IDRs are a major problem for drug development because they are usually not detected during clinical trials. In this study we focused on IDRs of Nevirapine (NVP), which is a non-nucleoside reverse transcriptase inhibitor used for the treatment of Human Immunodeficiency Virus (HIV) infections. The use of NVP is limited by a relatively high incidence of skin rash. NVP also causes a rash in female Brown Norway (BN) rats, which we use as animal model for this study. Our hypothesis is that idiosyncratic skin reactions associated with NVP treatment are due to post-translational modifications of proteins (e.g., glutathionylation) detectable by MS. The main objective of this study was to identify the proteins that are targeted by a reactive metabolite of Nevirapine in the skin. The specific objectives derived from the general objective were as follow: 1) To implement the click chemistry approach to detect proteins modified by a reactive NVP-Alkyne (NVP-ALK) metabolite. The purpose of using NVP-ALK was to couple it with Biotin using cycloaddition Click Chemistry reaction. 2) To detect protein modification using Western blotting and Mass Spectrometry techniques, which is important to understand the mechanism of NVP induced toxicity. 3) To identify the proteins using MASCOT search engine for protein identification, by comparing obtained spectrum from Mass Spectrometry with theoretical spectrum to find a matching peptide sequence. 4) To test if the drug or drug metabolites can cause harmful effects, as the induction of oxidative stress in cells (via protein glutathionylation). Oxidative stress causes cell damage that mediates signals, which likely induces the immune response. The results showed that Nevirapine is metabolized to a reactive metabolite, which causes protein modification. The extracted protein from the treated BN rats matched 10% of keratin, which implies that keratin was the protein targeted by the NVP-ALK.
Resumo:
Vascular phloem loading has long been recognized as an essential step in the establishment of a systemic virus infection. Yet little is known about this process and the mechanisms that control it. In this study, an interaction between the replication protein of Tobacco mosaic virus (TMV) and phloem specific auxin/indole acetic acid (Aux/IAA) transcriptional regulators was found to modulate virus phloem loading. Promoter expression studies show TMV 126/183 kDa interacting Aux/IAAs predominantly express and accumulate within the nuclei of phloem companion cells (CC). Furthermore, CC Aux/IAA nuclear localization is disrupted upon infection with an interacting virus but not during infection with a non-interacting virus. In situ analysis of virus spread shows the inability of TMV variants to disrupt Aux/IAA CC nuclear localization correlates with a reduced ability to load into the vascular tissue. Subsequent systemic movement assays also demonstrate that a virus capable of disrupting Aux/IAA localization is significantly more competitive at systemic movement than a non-interacting virus. Similarly, CC expression and over-accumulation of a degradation-resistant-interacting Aux/IAA protein was found to selectively inhibit TMV accumulation and phloem loading. Transcriptional expression studies demonstrate a role for interacting Aux/IAA proteins in the regulation of salicylic acid and jasmonic acid dependent host defense responses as well as virus specific movement factors including pectin methylesterase that are involved in regulating plasmodesmata size exclusion limits and promoting virus cell-to-cell movement. Further characterization of the phloem environment was done using two phloem specific promoters (pSUC2 and pSULTR2;2) to generate epitope-tagged polysomal-RNA complexes. Immuno-purification using the epitope tag allowed us to obtain mRNAs bound to polysomes (the translatome) specifically in phloem tissue. We found the phloem translatome is uniquely altered during TMV infection with 90% and 88% of genes down regulated in the pSUC2 and pSULTR2;2 phloem translatomes, compared to 31% of genes down regulated in the whole plant p35S translatome. Transcripts down regulated in phloem include genes involved in callose deposition at plasmodesmata, host defense responses, and RNA silencing. Combined, these findings indicate TMV reprograms gene expression within the vascular phloem as a means to enhance phloem loading and systemic spread.
Resumo:
Résumé: Chaque année, les épidémies saisonnières d’influenza causent de 3 à 5 millions de cas sévères de maladie, entraînant entre 250 000 et 500 000 décès mondialement. Seulement deux classes d’antiviraux sont actuellement commercialisées pour traiter cette infection respiratoire : les inhibiteurs de la neuraminidase, tels que l’oseltamivir (Tamiflu) et les inhibiteurs du canal ionique M2 (adamantanes). Toutefois, leur utilisation est limitée par l’apparition rapide de résistance virale. Il est donc d’un grand intérêt de développer de nouvelles stratégies thérapeutiques pour le traitement de l’influenza. Le virus influenza dépend de l’activation de sa protéine de surface hémagglutinine (HA) pour être infectieux. L’activation a lieu par clivage protéolytique au sein d’une séquence d’acides aminés conservée. Ce clivage doit être effectué par une enzyme de l’hôte, étant donné que le génome du virus ne code pour aucune protéase. Pour les virus infectant l’humain, plusieurs études ont montré le potentiel de protéases à sérine transmembranaires de type II (TTSP) à promouvoir la réplication virale : TMPRSS2, TMPRSS4, HAT, MSPL, Desc1 et matriptase, identifiée récemment par notre équipe (Beaulieu, Gravel et al., 2013), activent l’HA des virus influenza A (principalement H1N1 et H3N2). Toutefois, il existe peu d’information sur le clivage de l’HA des virus influenza B, et seulement TMPRSS2 et HAT ont été identifiées comme étant capables d’activer ce type de virus. Les travaux de ce projet de maîtrise visaient à identifier d’autres TTSP pouvant activer l’HA de l’influenza B. L’efficacité de clivage par la matriptase, hepsine, HAT et Desc1 a été étudiée et comparée entre ces TTSP. Ces quatre protéases s’avèrent capables de cliver l’HA de l’influenza B in vitro. Cependant, seul le clivage par matriptase, hepsine et HAT promeut la réplication virale. De plus, ces TTSP peuvent aussi supporter la réplication de virus influenza A. Ainsi, l’utilisation d’un inhibiteur de TTSP, développé en collaboration avec notre laboratoire, permet de bloquer significativement la réplication virale dans les cellules épithéliales bronchiques humaines Calu-3. Cet inhibiteur se lie de façon covalente et lentement réversible au site actif de la TTSP par un mécanisme slow tight-binding. Puisque cet inhibiteur cible une composante de la cellule hôte, et non une protéine virale, il n’entraîne pas le développement de résistance après 15 passages des virus en présence de l’inhibiteur dans les cellules Calu-3. L’inhibition des TTSP activatrices d’HA dans le système respiratoire humain représente donc une nouvelle stratégie thérapeutique pouvant mener au développement d’antiviraux efficaces contre l’influenza.
Resumo:
Dengue fever is one of the most important mosquito-borne diseases worldwide and is caused by infection with dengue virus (DENV). The disease is endemic in tropical and sub-tropical regions and has increased remarkably in the last few decades. At present, there is no antiviral or approved vaccine against the virus. Treatment of dengue patients is usually supportive, through oral or intravenous rehydration, or by blood transfusion for more severe dengue cases. Infection of DENV in humans and mosquitoes involves a complex interplay between the virus and host factors. This results in regulation of numerous intracellular processes, such as signal transduction and gene transcription which leads to progression of disease. To understand the mechanisms underlying the disease, the study of virus and host factors is therefore essential and could lead to the identification of human proteins modulating an essential step in the virus life cycle. Knowledge of these human proteins could lead to the discovery of potential new drug targets and disease control strategies in the future. Recent advances of high throughput screening technologies have provided researchers with molecular tools to carry out investigations on a large scale. Several studies have focused on determination of the host factors during DENV infection in human and mosquito cells. For instance, a genome-wide RNA interference (RNAi) screen has identified host factors that potentially play an important role in both DENV and West Nile virus replication (Krishnan et al. 2008). In the present study, a high-throughput yeast two-hybrid screen has been utilised in order to identify human factors interacting with DENV non-structural proteins. From the screen, 94 potential human interactors were identified. These include proteins involved in immune signalling regulation, potassium voltage-gated channels, transcriptional regulators, protein transporters and endoplasmic reticulum-associated proteins. Validation of fifteen of these human interactions revealed twelve of them strongly interacted with DENV proteins. Two proteins of particular interest were selected for further investigations of functional biological systems at the molecular level. These proteins, including a nuclear-associated protein BANP and a voltage-gated potassium channel Kv1.3, both have been identified through interaction with the DENV NS2A. BANP is known to be involved in NF-kB immune signalling pathway, whereas, Kv1.3 is known to play an important role in regulating passive flow of potassium ions upon changes in the cell transmembrane potential. This study also initiated a construction of an Aedes aegypti cDNA library for use with DENV proteins in Y2H screen. However, several issues were encountered during the study which made the library unsuitable for protein interaction analysis. In parallel, innate immune signalling was also optimised for downstream analysis. Overall, the work presented in this thesis, in particular the Y2H screen provides a number of human factors potentially targeted by DENV during infection. Nonetheless, more work is required to be done in order to validate these proteins and determine their functional properties, as well as testing them with infectious DENV to establish a biological significance. In the long term, data from this study will be useful for investigating potential human factors for development of antiviral strategies against dengue.
Resumo:
Aquaculture, is perceived as having the greatest potential to meet the growing demand for aquatic food. Crustaceans form one of the main value added components in aquaculture and among them, shrimp aquaculture is the predominant one. Industrial shrimp fanning, in combination with poor management in shrimp aquaculture, has quickly led to severe pollution in shrimp ponds, thereby creating a suitable environment for development of bacterial and virus diseases. White spot disease is one of the most deadly diseases that are caused heavy loss in all Penaeid shrimps family. In Iran during 2002 to 2004 in the Kuzestan province and in 2005 in Bushehr province, the most ponds and farms infected with white spot and the entire industry was facing threat of closure. Owing to the impact of WSSV infection to shrimp aquaculture, there is an urgent need to develop suitable strategies to protect cultured shrimps and make aquaculture more sustainable. Therefore, this study aimed to examine the possibility of protecting shrimp against white spot syndrome virus using bioencapsulated Anemia with E. coil containing the recombinant protein VP28, designed. Virus genome was extracted from naturally infected Litopenaeus vannamei in the Choebdch farms and VP28 gene by designed primers was amplified, extracted, purified and cloned in E. coli TGI. Protein expression evaluated and inactivated bacteria containing recombinant protein encapsulated in Artemia nauplii. White shrimp post larvae stage 5 were fed for 5 days with recombinant nauplii and twice on days 7 and 25 after feeding with Artemia nauplii were challenged with white spot virus. The results of the first experiment revealed that cumulative mortality percent in the group receiving the bacteria containing recombinant plasmid (pMal + VP28) was %14.44±1.11 and the relative percent survival %80.30±1.51. In this group the mortality rates in the various repetitions varied from the 13.33% to 16.66% and relative percent survival of 77.27% to 81.81%. in the Non-recombinant plasmid group (pMal) Mean percent mortality was% 33.33±3.84 and the Relative Percent Survival %54.54±5.24 and in the group that received bacteria contained no recombinant plasmid the Mean cumulative mortality percent was%48.88 ± 5.87 and Relative Percent Survival%33.33± 8.01.
Resumo:
Background: Occult hepatitis B infections are becoming a major global threat, but the available data on its prevalence in various parts of the world are often divergent. Objective: This study aimed to detect occult hepatitis B virus in hepatitis B surface antigen-negative serum using anti-HBc as a marker of previous infection. Patient and Methods: A total of 1000 randomly selected hepatitis B surface antigen-negative sera from blood donors were tested for hepatitis B core antibody and hepatitis B surface antibody using an ELISA and nested polymerase chain reaction was done using primers specific to the surface gene (S-gene). Results: Of the 1000 samples 55 (5.5%) were found to be reactive, of which 87.3% (48/55) were positive for hepatitis B surface antibody, indicating immunity as a result of previous infection however, that does not exclude active infection with escaped mutant HBV. Nested PCR results showed the presence of hepatitis B viral DNA in all the 55 samples that were positive for core protein, which is in agreement with the hepatitis B surface antibody result. Conclusion: This study reveals the 5.5% prevalence of occult hepatitis B among Malaysian blood donors as well as the reliability of using hepatitis B core antibody in screening for occult hepatitis B infection in low endemic, low socioeconomic settings.
Resumo:
Dengue virus (DENV) infections represent a significant concern for public health worldwide, being considered as the most prevalent arthropod-borne virus regarding the number of reported cases. In this study, we report the complete genome sequencing of a DENV serotype 4 isolate, genotype II, obtained in the city of Manaus, directly from the serum sample, applying Ion Torrent sequencing technology. The use of a massive sequencing technology allowed the detection of two variable sites, one in the coding region for the viral envelope protein and the other in the nonstructural 1 coding region within viral populations.
Resumo:
An unusually high incidence of microcephaly in newborns has recently been observed in Brazil. There is a temporal association between the increase in cases of microcephaly and the Zika virus (ZIKV) epidemic. Viral RNA has been detected in amniotic fluid samples, placental tissues and newborn and fetal brain tissues. However, much remains to be determined concerning the association between ZIKV infection and fetal malformations. In this study, we provide evidence of the transplacental transmission of ZIKV through the detection of viral proteins and viral RNA in placental tissue samples from expectant mothers infected at different stages of gestation. We observed chronic placentitis (TORCH type) with viral protein detection by immunohistochemistry in Hofbauer cells and some histiocytes in the intervillous spaces. We also demonstrated the neurotropism of the virus via the detection of viral proteins in glial cells and in some endothelial cells and the observation of scattered foci of microcalcifications in the brain tissues. Lesions were mainly located in the white matter. ZIKV RNA was also detected in these tissues by real-time-polymerase chain reaction. We believe that these findings will contribute to the body of knowledge of the mechanisms of ZIKV transmission, interactions between the virus and host cells and viral tropism.
Resumo:
Tese de Doutoramento, Ciências Agrárias, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Numerosos estudios mencionan que la sobreexpresión de la proteína p16, un marcador biológico que permite identificar lesiones preneoplásicas del epitelio exocervical, tendría una alta asociación con el Papiloma Virus Humano (HPV) de alto riesgo oncogénico. Es un estudio descriptivo correlacional cuyo objetivo fue establecer asociación de las Neoplasias Intraepiteliales Cervicales grado I (NIC I), HPV positivos, con la expresión del p16. Materiales, métodos y resultados: Es un estudio correlacional que se realizó en el período de noviembre de 2009 a noviembre de 2010; se presentaron 256 casos de NIC I de los cuales, 72 fueron HPV positivos; se practicó técnica de p16. La edad promedio de las mujeres fue de 41 años. Se encontró positividad para el p16 en 40 casos (55.6%) y fueron negativos 32 (44.4%). De los casos positivos para p16, los tipos virales más frecuentes fueron los de alto riesgo: 33 (82.5%). El p16 fue valorado en cuantía, distribución e intensidad, estableciéndose relación entre la intensidad del p16 con los virus de alto riesgo (p=0.038). Cuando se analizó la edad y el tipo viral, pacientes entre 20 y 40 años (36 casos, 90%) presentaron genoma de HPV de alto riesgo. Conclusiones: Existió correlación entre la intensidad del p16 con la presencia de HPV de alto riesgo, ayudando a seleccionar grupos con tendencia a la progresión de la enfermedad.
Resumo:
Rupestris stem pitting associated virus (RSPaV) is a species in the genus Foveavirus (Martelli and Jelkman, 1998) and the family Flexiviridae. The virion has a positive sense, single stranded, polyadenylated RNA genome of 8.7kb in size and a coat protein of 28kD (Martelli and Jelkman, 1998). The virus has been reported to be present in pollen (Rowhani et aI., 2000) and seeds (Stewart and Nassuth, 2001), however, it has not been proved to be seed-transmitted. In our investigation reported here we have proven that RSPaV transmits by seed from RSPaV-infected mother plants to their siblings.
Resumo:
The apparent simplicity of viruses hides the complexity of their interactions with their hosts. Viruses are masters at circumventing host defenses and manipulating the cellular environment for their own benefit. The replication of the largest known family of single-stranded DNA viruses, Geminiviridae, is impaired by DNA methylation and Arabidopsis mutants affected in cytosine methylation are hypersusceptible to geminivirus infection. This implies that plants might use methylation as a defense against geminiviruses and that the viral genome is a target for plant DNA methyltransferases. We have found a novel counter-defense strategy used by geminiviruses, that reduces the expression of the plant maintenance DNA methyltransferases, MET1 and CMT3, in both, locally and systemically infected tissues. Furthermore, we demonstrated that the virus-mediated repression of these two maintenance DNA methyltransferases is widely spread among different geminivirus species. Additionally, we identified Rep as the geminiviral protein responsible for the repression of MET1 and CMT3, and another viral protein, C4, as an ancillary player in MET1 downregulation. The presence of Rep, suppresses TGS of an Arabidopsis transgene and of host loci whose expression is strongly controlled by CG methylation. Bisulfite sequencing analyses showed that the expression of Rep caused a substantial reduction in the levels of DNA methylation at CG sites. Our findings suggest that Rep, the only viral protein essential for geminiviral replication, displays TGS suppressor activity through a mechanism distinct from the one thus far described for geminiviruses.
Resumo:
Understanding how virus strains offer protection against closely related emerging strains is vital for creating effective vaccines. For many viruses, including Foot-and-Mouth Disease Virus (FMDV) and the Influenza virus where multiple serotypes often co-circulate, in vitro testing of large numbers of vaccines can be infeasible. Therefore the development of an in silico predictor of cross-protection between strains is important to help optimise vaccine choice. Vaccines will offer cross-protection against closely related strains, but not against those that are antigenically distinct. To be able to predict cross-protection we must understand the antigenic variability within a virus serotype, distinct lineages of a virus, and identify the antigenic residues and evolutionary changes that cause the variability. In this thesis we present a family of sparse hierarchical Bayesian models for detecting relevant antigenic sites in virus evolution (SABRE), as well as an extended version of the method, the extended SABRE (eSABRE) method, which better takes into account the data collection process. The SABRE methods are a family of sparse Bayesian hierarchical models that use spike and slab priors to identify sites in the viral protein which are important for the neutralisation of the virus. In this thesis we demonstrate how the SABRE methods can be used to identify antigenic residues within different serotypes and show how the SABRE method outperforms established methods, mixed-effects models based on forward variable selection or l1 regularisation, on both synthetic and viral datasets. In addition we also test a number of different versions of the SABRE method, compare conjugate and semi-conjugate prior specifications and an alternative to the spike and slab prior; the binary mask model. We also propose novel proposal mechanisms for the Markov chain Monte Carlo (MCMC) simulations, which improve mixing and convergence over that of the established component-wise Gibbs sampler. The SABRE method is then applied to datasets from FMDV and the Influenza virus in order to identify a number of known antigenic residue and to provide hypotheses of other potentially antigenic residues. We also demonstrate how the SABRE methods can be used to create accurate predictions of the important evolutionary changes of the FMDV serotypes. In this thesis we provide an extended version of the SABRE method, the eSABRE method, based on a latent variable model. The eSABRE method takes further into account the structure of the datasets for FMDV and the Influenza virus through the latent variable model and gives an improvement in the modelling of the error. We show how the eSABRE method outperforms the SABRE methods in simulation studies and propose a new information criterion for selecting the random effects factors that should be included in the eSABRE method; block integrated Widely Applicable Information Criterion (biWAIC). We demonstrate how biWAIC performs equally to two other methods for selecting the random effects factors and combine it with the eSABRE method to apply it to two large Influenza datasets. Inference in these large datasets is computationally infeasible with the SABRE methods, but as a result of the improved structure of the likelihood, we are able to show how the eSABRE method offers a computational improvement, leading it to be used on these datasets. The results of the eSABRE method show that we can use the method in a fully automatic manner to identify a large number of antigenic residues on a variety of the antigenic sites of two Influenza serotypes, as well as making predictions of a number of nearby sites that may also be antigenic and are worthy of further experiment investigation.
Resumo:
Antecedente: La infección por el virus sincitial respiratorio (VSR) representa una elevada morbimortalidad, y en algunos casos necesidad de manejo en unidades de cuidado intensivo pediátrico (UCIP). La respuesta inmunológica influye de manera directa en la expresión de la severidad y pronóstico de los pacientes con infección respiratoria. Metodología: Estudio de una cohorte retrospectiva de pacientes con infección respiratoria grave secundaria a VSR, sin historia de inmunodeficiencia, atendidos en la UCIP del Hospital Universitario Clínica San Rafael. Se realizó análisis descriptivoglobaly de acuerdo a la categorización de las prueba de IgG. Resultados: De 188 pacientes que ingresaron a la UCIP, 13% presentaron infección por VSR (24), con una edad promedio de 7,3 (DE=3,6) meses. Pertenecían al sexo masculino79,83%. Se encontró que 12,5% tenían un valor de IgGbajo para su edad, 58,33% tenían valores en límite inferior y el 29,17% dentro de rangos normales para su edad. En los pacientes con IgG baja, fue mayor la presentación de choque séptico que no responde a líquidos (100 vs 92 vs 86%), la mediana de días de ventilación mecánica fue mayor (8 vs 6 vs 5 respectivamente), así como la mortalidad (67 vs 7,1 vs 0%). Conclusión: Nuestra serie encontró que aquellos pacientes con niveles bajos o valores en el límite inferior de IgG sérica tuvieron mayor compromiso sistémico, mayor duración de ventilación mecánica y mayor mortalidad. Se necesitan estudios prospectivos que relaciones niveles bajos de IgG con severidad y pronostico en estos pacientes con infección grave por VSR.