940 resultados para very low density lipoprotein cholesterol
Resumo:
BACKGROUND: In humans, overproduction of apolipoprotein B (apoB) is positively associated with premature coronary artery diseases. To reduce the levels of apoB mRNA, we have designed an apoB mRNA-specific hammerhead ribozyme targeted at nucleotide sequences GUA6679 (RB15) mediated by adenovirus, which efficiently cleaves and decreases apoB mRNA by 80% in mouse liver and attenuates the hyperlipidemic condition. In the current study, we used an adeno-associated virus vector, serotype 2 (AAV2) and a self-complementary AAV2 vector (scAAV2) to demonstrate the effect of long-term tissue-specific gene expression of RB15 on the regulation apoB mRNA in vivo. METHODS: We constructed a hammerhead ribozyme RB15 driven by a liver-specific transthyretin (TTR) promoter using an AAV2 vector (rAAV2-TTR-RB15). HepG2 cells and hyperlipidemic mice deficient in both the low density lipoprotein receptor and the apoB mRNA editing enzyme genes (LDLR-/-Apobec1-/-; LDb) were transduced with rAAV2-TTR-RB15 and a control vector rAAV-TTR-RB15-mutant (inactive ribozyme). The effects of ribozyme RB15 on apoB metabolism and atherosclerosis development were determined in LDb mice at 5-month after transduction. A self-complementary AAV2 vector expressing ribozyme RB15 (scAAV2-TTR-RB15) was also engineered and used to transduce HepG2 cells. Studies were designed to compare the gene expression efficiency between rAAV2-TTR-RB15 and scAAV2-TTR-RB15. RESULTS: The effect of ribozyme RB15 RNA on reducing apoB mRNA levels in HepG2 cells was observed only on day-7 after rAAV2-TTR-RB15 transduction. And, at 5-month after rAAV2-TTR-RB15 treatment, the apoB mRNA levels in LDb mice were significantly decreased by 43%, compared to LDb mice treated with control vector rAAV2-TTR-RB15-mutant. Moreover, both the rAAV2-TTR-RB15 viral DNA and ribozyme RB15 RNA were still detectable in mice livers at 5-month after treatment. However, this rAAV2-TTR-RB15 vector mediated a prolonged but low level of ribozyme RB15 gene expression in the mice livers, which did not produce the therapeutic effects on alteration the lipid levels or the inhibition of atherosclerosis development. In contrast, the ribozyme RB15 RNA mediated by scAAV2-TTR-RB15 vector was expressed immediately at day-1 after transduction in HepG2 cells. The apoB mRNA levels were decreased 47% (p = 0.001), compared to the control vector scAAV2-TTR-RB15-mutant. CONCLUSION: This study provided evidence that the rAAV2 single-strand vector mediated a prolonged but not efficient transduction in mouse liver. However, the scAAV2 double-strand vector mediated a rapid and efficient gene expression in liver cells. This strategy using scAAV2 vectors represents a better approach to express small molecules such as ribozyme.
Resumo:
Biomarkers of blood lipid modification and oxidative stress have been associated with increased cardiovascular morbidity. We sought to determine whether these biomarkers were related to functional indices of stenosis severity among patients with stable coronary artery disease. We studied 197 consecutive patients with stable coronary artery disease due to single vessel disease. Fractional flow reserve (FFR) ≤ 0.80 was assessed as index of a functionally significant lesion. Serum levels of secretory phospholipase A2 (sPLA2) activity, secretory phospholipase A2 type IIA (sPLA2-IIA), myeloperoxydase (MPO), lipoprotein-associated phospholipase A2 (Lp-PLA2), and oxidized low-density lipoprotein (OxLDL) were assessed using commercially available assays. Patients with FFR > 0.8 had higher sPLA2 activity, sPLA2 IIA, and OxLDL levels than patients with FFR ≤ 0.8 (21.25 [16.03-27.28] vs 25.85 [20.58-34.63] U/mL, p < 0.001, 2.0 [1.5-3.4] vs 2.6 [2.0-3.4] ng/mL, p < 0.01; and 53.0 [36.0-71.0] vs 64.5 [50-89.25], p < 0.001 respectively). Patients with FFR > 0.80 had similar Lp-PLA2 and MPO levels versus those with FFR ≤ 0.8. sPLA2 activity, sPLA2 IIA significantly increased area under the curve over baseline characteristics to predict FFR ≤ 0.8 (0.67 to 0.77 (95 % confidence interval [CI]: 0.69-0.85) p < 0.01 and 0.67 to 0.77 (95 % CI: 0.69-0.84) p < 0.01, respectively). Serum sPLA2 activity as well as sPLA2-IIA level is related to functional characteristics of coronary stenoses in patients with stable coronary artery disease.
Resumo:
AIMS The genetic polymorphism of apolipoprotein E (APOE) has been suggested to modify the effect of smoking on the development of coronary artery disease (CAD) in apparently healthy persons. The interaction of these factors in persons undergoing coronary angiography is not known. METHODS AND RESULTS We analysed the association between the APOE-genotype, smoking, angiographic CAD, and mortality in 3263 participants of the LUdwigshafen RIsk and Cardiovascular Health study. APOE-genotypes were associated with CAD [ε22 or ε23: odds ratio (OR) 0.56, 95% confidence interval (CI) 0.43-0.71; ε24 or ε34 or ε44: OR 1.10, 95% CI 0.89-1.37 compared with ε33] and moderately with cardiovascular mortality [ε22 or ε23: hazard ratio (HR) 0.71, 95% CI 0.51-0.99; ε33: HR 0.92, 95% CI 0.75-1.14 compared with ε24 or ε34 or ε44]. HRs for total mortality were 1.39 (95% CI 0.39-0.1.67), 2.29 (95% CI 1.85-2.83), 2.07 (95% CI 1.64-2.62), and 2.95 (95% CI 2.10-4.17) in ex-smokers, current smokers, current smokers without, or current smokers with one ε4 allele, respectively, compared with never-smokers. Carrying ε4 increased mortality in current, but not in ex-smokers (HR 1.66, 95% CI 1.04-2.64 for interaction). These findings applied to cardiovascular mortality, were robust against adjustment for cardiovascular risk factors, and consistent across subgroups. No interaction of smoking and ε4 was seen regarding non-cardiovascular mortality. Smokers with ε4 had reduced average low-density lipoprotein (LDL) diameters, elevated oxidized LDL, and lipoprotein-associated phospholipase A2. CONCLUSION In persons undergoing coronary angiography, there is a significant interaction between APOE-genotype and smoking. The presence of the ε4 allele in current smokers increases cardiovascular and all-cause mortality.
Resumo:
Metabolic syndrome after transplantation is a major concern following solid organ transplantation (SOT). The CREB-regulated transcription co-activator 2 (CRTC2) regulates glucose metabolism. The effect of CRTC2 polymorphisms on new-onset diabetes after transplantation (NODAT) was investigated in a discovery sample of SOT recipients (n1=197). Positive results were tested for replication in two samples from the Swiss Transplant Cohort Study (STCS, n2=1294 and n3=759). Obesity and other metabolic traits were also tested. Associations with metabolic traits in population-based samples (n4=46'186, n5=123'865, n6>100,000) were finally analyzed. In the discovery sample, CRTC2 rs8450-AA genotype was associated with NODAT, fasting blood glucose and body mass index (Pcorrected<0.05). CRTC2 rs8450-AA genotype was associated with NODAT in the second STCS replication sample (odd ratio (OR)=2.01, P=0.04). In the combined STCS replication samples, the effect of rs8450-AA genotype on NODAT was observed in patients having received SOT from a deceased donor and treated with tacrolimus (n=395, OR=2.08, P=0.02) and in non-kidney transplant recipients (OR=2.09, P=0.02). Moreover, rs8450-AA genotype was associated with overweight or obesity (n=1215, OR=1.56, P=0.02), new-onset hyperlipidemia (n=1007, OR=1.76, P=0.007), and lower high-density lipoprotein-cholesterol (n=1214, β=-0.08, P=0.001). In the population-based samples, a proxy of rs8450G>A was significantly associated with several metabolic abnormalities. CRTC2 rs8450G>A appears to have an important role in the high prevalence of metabolic traits observed in patients with SOT. A weak association with metabolic traits was also observed in the population-based samples.The Pharmacogenomics Journal advance online publication, 8 December 2015; doi:10.1038/tpj.2015.82.
Resumo:
BACKGROUND/OBJECTIVES Obesity contributes to telomere attrition. Studies focusing on short-term effects of weight loss have been unable to identify protection of telomere length. This study investigates long-term effects of pronounced weight loss induced by bariatric surgery on telomere length. SUBJECTS/METHODS One hundred forty-two patients were recruited in a prospective, controlled intervention study, follow-up investigations were done after 10.46±1.48 years. A control group of normal weight participants was recruited and followed from 1995 to 2005 in the Bruneck Study. A total of 110 participants from each study was matched by age and sex to compare changes in telomere length. Quantitative PCR was used to determine telomere length. RESULTS Telomere length increased significantly by 0.024±0.14 (P=0.047) in 142 bariatric patients within 10 years after surgery. The increase was different from telomere attrition in an age- and sex-matched cohort population of the Bruneck Study (-0.057±0.18; β=0.08; P=0.003). Significant changes in telomere length disappeared after adjusting for baseline body mass index (BMI) because of general differences in BMI and telomere length between the two study populations (β=0.07; P=0.06). Age was proportional to telomere length in matched bariatric patients (r=0.188; P=0.049) but inversely correlated with telomere length in participants of the Bruneck Study (r=-0.197; P=0.039). There was no association between percent BMI/excess weight loss and telomere attrition in bariatric patients. Baseline telomere length in bariatric patients was inversely associated with baseline plasma cholesterol and triglyceride concentrations. Telomere shortening was associated with lower high-density lipoprotein cholesterol and higher fasting glucose concentration at baseline in bariatric patients. CONCLUSIONS Increases in relative telomere length were found after bariatric surgery in the long term, presumably due to amelioration of metabolic traits. This may overrule the influence of age and baseline telomere length and facilitate telomere protection in patients experiencing pronounced weight loss.
Resumo:
The constellation of adverse cardiovascular disease (CVD) and metabolic risk factors, including elevated abdominal obesity, blood pressure (BP), glucose, and triglycerides (TG) and lowered high-density lipoprotein-cholesterol (HDL-C), has been termed the metabolic syndrome (MetSyn) [1]. A number of different definitions have been developed by the World Health Organization (WHO) [2], the National Cholesterol Education Program Adult Treatment Panel III (ATP III) [3], the European Group for the Study of Insulin Resistance (EGIR) [4] and, most recently, the International Diabetes Federation (IDF) [5]. Since there is no universal definition of the Metabolic Syndrome, several authors have derived different risk scores to represent the clustering of its components [6-11].
Resumo:
Circulating autoantibodies to phospholipids (aPLs), such as cardiolipin (CL), are found in patients with antiphospholipid antibody syndrome (APS). We recently demonstrated that many aPLs bound to CL only after it had been oxidized (OxCL), but not to a reduced CL analogue that could not undergo oxidation. We now show that the neoepitopes recognized by some aPLs consist of adducts formed between breakdown products of oxidized phospholipid and associated proteins, such as β2 glycoprotein 1 (β2GP1). Addition of human β2GP1, polylysine, native low-density lipoprotein, or apolipoprotein AI to OxCL-coated wells increased the anticardiolipin antibody (aCL) binding from APS sera that first had been diluted so that no aCL binding to OxCL could be detected. No increase in aCL binding was observed when these proteins were added to wells coated with reduced CL. The ability of β2GP1, polylysine, or low-density lipoprotein to be a “cofactor” for aCL binding to OxCL was greatly reduced when the proteins were methylated. Incubation of β2GP1 with oxidized 1-palmitoyl-2-linoleyl-[1-14C]-phosphatidylcholine (PC), but not with dipalmitoyl-[1-14C]-PC, led to formation of covalent adducts with β2GP1 recognized by APS sera. These data suggest that the reactive groups of OxCL, such as aldehydes generated during the decomposition of oxidized polyunsaturated fatty acids, form covalent adducts with β2GP1 (and other proteins) and that these are epitopes for aCLs. Knowledge that the epitopes recognized by many aPLs are adducts of oxidized phospholipid and associated proteins, including β2GP1, may give new insights into the pathogenic events underlying the clinical manifestations of APS.
Resumo:
Free transition metal ions oxidize lipids and lipoproteins in vitro; however, recent evidence suggests that free metal ion-independent mechanisms are more likely in vivo. We have shown previously that human ceruloplasmin (Cp), a serum protein containing seven Cu atoms, induces low density lipoprotein oxidation in vitro and that the activity depends on the presence of a single, chelatable Cu atom. We here use biochemical and molecular approaches to determine the site responsible for Cp prooxidant activity. Experiments with the His-specific reagent diethylpyrocarbonate (DEPC) showed that one or more His residues was specifically required. Quantitative [14C]DEPC binding studies indicated the importance of a single His residue because only one was exposed upon removal of the prooxidant Cu. Plasmin digestion of [14C]DEPC-treated Cp (and N-terminal sequence analysis of the fragments) showed that the critical His was in a 17-kDa region containing four His residues in the second major sequence homology domain of Cp. A full length human Cp cDNA was modified by site-directed mutagenesis to give His-to-Ala substitutions at each of the four positions and was transfected into COS-7 cells, and low density lipoprotein oxidation was measured. The prooxidant site was localized to a region containing His426 because CpH426A almost completely lacked prooxidant activity whereas the other mutants expressed normal activity. These observations support the hypothesis that Cu bound at specific sites on protein surfaces can cause oxidative damage to macromolecules in their environment. Cp may serve as a model protein for understanding mechanisms of oxidant damage by copper-containing (or -binding) proteins such as Cu, Zn superoxide dismutase, and amyloid precursor protein.
Resumo:
The three-dimensional structure of the N-terminal domain (residues 18–112) of α2-macroglobulin receptor-associated protein (RAP) has been determined by NMR spectroscopy. The structure consists of three helices composed of residues 23–34, 39–65, and 73–88. The three helices are arranged in an up-down-up antiparallel topology. The C-terminal 20 residues were shown not to be in a well defined conformation. A structural model for the binding of RAP to the family of low-density lipoprotein receptors is proposed. It defines a role in binding for both the unordered C terminus and the structural scaffold of the core structure. Pathogenic epitopes for the rat disease Heymann nephritis, an experimental model of human membranous glomerulonephritis, have been identified in RAP and in the large endocytic receptor gp330/megalin. Here we provide the three-dimensional structure of the pathogenic epitope in RAP. The amino acid residues known to form the epitope are in a helix–loop–helix conformation, and from the structure it is possible to rationalize the published results obtained from studies of fragments of the N-terminal domain.
Resumo:
Accumulated data indicate that endocytosis of the glycosylphosphatidyl-inositol-anchored protein urokinase plasminogen activator receptor (uPAR) depends on binding of the ligand uPA:plasminogen activator inhibitor-1 (PAI-1) and subsequent interaction with internalization receptors of the low-density lipoprotein receptor family, which are internalized through clathrin-coated pits. This interaction is inhibited by receptor-associated protein (RAP). We show that uPAR with bound uPA:PAI-1 is capable of entering cells in a clathrin-independent process. First, HeLaK44A cells expressing mutant dynamin efficiently internalized uPA:PAI-1 under conditions in which transferrin endocytosis was blocked. Second, in polarized Madin–Darby canine kidney (MDCK) cells, which expressed human uPAR apically, the low basal rate of uPAR ligand endocytosis, which could not be inhibited by RAP, was increased by forskolin or phorbol ester (phorbol 12-myristate 13-acetate), which selectively up-regulate clathrin-independent endocytosis from the apical domain of epithelial cells. Third, in subconfluent nonpolarized MDCK cells, endocytosis of uPA:PAI-1 was only decreased marginally by RAP. At the ultrastructural level uPAR was largely excluded from clathrin-coated pits in these cells and localized in invaginated caveolae only in the presence of cross-linking antibodies. Interestingly, a larger fraction of uPAR in nonpolarized relative to polarized MDCK cells was insoluble in Triton X-100 at 0°C, and by surface labeling with biotin we also show that internalized uPAR was mainly detergent insoluble, suggesting a correlation between association with detergent-resistant membrane microdomains and higher degree of clathrin-independent endocytosis. Furthermore, by cryoimmunogold labeling we show that 5–10% of internalized uPAR in nonpolarized, but not polarized, MDCK cells is targeted to lysosomes by a mechanism that is regulated by ligand occupancy.
Resumo:
We previously identified the 11 amino acid C1 region of the cytoplasmic domain of P-selectin as essential for an endosomal sorting event that confers rapid turnover on P-selectin. The amino acid sequence of this region has no obvious similarity to other known sorting motifs. We have analyzed the sequence requirements for endosomal sorting by measuring the effects of site-specific mutations on the turnover of P-selectin and of the chimeric protein LLP, containing the lumenal and transmembrane domains of the low density lipoprotein receptor and the cytoplasmic domain of P-selectin. Endosomal sorting activity was remarkably tolerant of alanine substitutions within the C1 region. The activity was eliminated by alanine substitution of only one amino acid residue, leucine 768, where substitution with several other large side chains, hydrophobic and polar, maintained the sorting activity. The results indicate that the endosomal sorting determinant is not structurally related to previously reported sorting determinants. Rather, the results suggest that the structure of the sorting determinant is dependent on the tertiary structure of the cytoplasmic domain.
Resumo:
The unc-52 gene encodes the nematode homologue of mammalian perlecan, the major heparan sulfate proteoglycan of the extracellular matrix. This is a large complex protein with regions similar to low-density lipoprotein receptors, laminin, and neural cell adhesion molecules (NCAMs). In this study, we extend our earlier work and demonstrate that a number of complex isoforms of this protein are expressed through alternative splicing. We identified three major classes of perlecan isoforms: a short form lacking the NCAM region and the C-terminal agrin-like region; a medium form containing the NCAM region, but still lacking the agrin-like region; and a newly identified long form that contains all five domains present in mammalian perlecan. Using region-specific antibodies and unc-52 mutants, we reveal a complex spatial and temporal expression pattern for these UNC-52 isoforms. As well, using a series of mutations affecting different regions and thus different isoforms of UNC-52, we demonstrate that the medium NCAM-containing isoforms are sufficient for myofilament lattice assembly in developing nematode body-wall muscle. Neither short isoforms nor isoforms containing the C-terminal agrin-like region are essential for sarcomere assembly or muscle cell attachment, and their role in development remains unclear.
Resumo:
The Caenorhabditis elegans oocyte is a highly amenable system for forward and reverse genetic analysis of receptor-mediated endocytosis. We describe the use of transgenic strains expressing a vitellogenin::green fluorescent protein (YP170::GFP) fusion to monitor yolk endocytosis by the C. elegans oocyte in vivo. This YP170::GFP reporter was used to assay the functions of C. elegans predicted proteins homologous to vertebrate endocytosis factors using RNA-mediated interference. We show that the basic components and pathways of endocytic trafficking are conserved between C. elegans and vertebrates, and that this system can be used to test the endocytic functions of any new gene. We also used the YP170::GFP assay to identify rme (receptor-mediated endocytosis) mutants. We describe a new member of the low-density lipoprotein receptor superfamily, RME-2, identified in our screens for endocytosis defective mutants. We show that RME-2 is the C. elegans yolk receptor.
Resumo:
In the “selective” cholesteryl ester (CE) uptake process, surface-associated lipoproteins [high density lipoprotein (HDL) and low density lipoprotein] are trapped in the space formed between closely apposed surface microvilli (microvillar channels) in hormone-stimulated steroidogenic cells. This is the same location where an HDL receptor (SR-BI) is found. In the current study, we sought to understand the relationship between SR-BI and selective CE uptake in a heterologous insect cell system. Sf9 (Spodoptera frugiperda) cells overexpressing recombinant SR-BI were examined for (i) SR-BI protein by Western blot analysis and light or electron immunomicroscopy, and (ii) selective lipoprotein CE uptake by the use of radiolabeled or fluorescent (BODIPY-CE)-labeled HDL. Noninfected or infected control Sf9 cells do not express SR-BI, show microvillar channels, or internalize CEs. An unexpected finding was the induction of a complex channel system in Sf9 cells expressing SR-BI. SR-BI-expressing cells showed many cell surface double-membraned channels, immunogold SR-BI, apolipoprotein (HDL) labeling of the channels, and high levels of selective HDL-CE uptake. Thus, double-membraned channels can be induced by expression of recombinant SR-BI in a heterologous system, and these specialized structures facilitate both the binding of HDL and selective HDL-CE uptake.
Resumo:
Restenosis is due to neointimal hyperplasia, which occurs in the coronary artery after percutaneous transluminal coronary angioplasty (PTCA). During restenosis, an impairment of nitric oxide (NO)-dependent pathways may occur. Concomitant hypercholesterolemia may exacerbate restenosis in patients undergoing PTCA. Here, we show that a NO-releasing aspirin derivative (NCX-4016) reduces the degree of restenosis after balloon angioplasty in low-density lipoprotein receptor-deficient mice and this effect is associated with reduced vascular smooth muscle cell (VSMC) proliferation and macrophage deposition at the site of injury. Drugs were administered following both therapeutic or preventive protocols. We demonstrate that NCX-4016 is effective both in prevention and treatment of restenosis in the presence of hypercholesterolemia. These data indicate that impairment of NO-dependent mechanisms may be involved in the development of restenosis in hypercholesterolemic mice. Although experimental models of restenosis may not reflect restenosis in humans in all details, we suggest that a NO-releasing aspirin derivative could be an effective drug in reducing restenosis following PTCA, especially in the presence of hypercholesterolemia and/or gastrointestinal damage.