993 resultados para uncoupling proteins


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ribosome inactivating proteins (RIPs) from plants possess RNA N-glycosidase activity that depurinates the major rRNA, thus damaging ribosome in an irreversible manner and arresting protein synthesis. RIPs occur in fungi, bacteria and plants and are abundant in angiosperms, where they appear to have defensive role. RIPs are presently classified as rRNA N-glycosidase in the enzyme nomenclature (EC 3.2.2.22) and do exhibit other enzymatic activities such as ribonuclease and deoxyribonuclease activities. RIPs are classified into two groups based on their difference in their primary structure. Type I RIPs consist of a single polypeptide chain of approximately 26–35 kDa that possess an RNA N-glycosidase activity. These proteins have attracted a great deal of attention because of their anti-viral, anti-tumor, and anti-microbial activities, which is useful in medical research and development. Here, we describe isolation of a novel protein from Momordica sp, a highclimbing vine from family Cucurbitaceae which is native to the tropical regions of Africa, Asia, Arabia and Caribbean. The purified protein has been verified by SDS-PAGE and mass spectrometry to contain only single chain Type-1 ribosome inactivating proteins (RIPs). With present experiments, we determined the presence of RIPs in edible plant materials, including some that are eaten raw by human beings. The novel protein is further characterized to validate its therapeutic potential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many plants contain ribosome inactivating proteins (RIPs) with N-glycosidase activity, which depurinate large ribosomal RNA and arrest protein synthesis. RIPs so far tested inhibit replication of mRNA as well as DNA viruses and these proteins, isolated from plants, are found to be effective against a broad range of viruses such as human immunodeficiency virus (HIV), hepatitis B virus (HBV) and herpes simplex virus (HSV). Most of the research work related to RIPs has been focused on antiviral activity against HIV; however, the exact mechanism of antiviral activity is still not clear. The mechanism of antiviral activity was thought to follow inactivation of the host cell ribosome, leading to inhibition of viral protein translation and host cell death. Enzymatic activity of RIPs is not limited to depurination of the large rRNA, in addition they can depurinate viral DNA as well as RNA. Recently, Phase I/II clinical trials have demonstrated the potential use of RIPs for treating patients with HIV disease. The aim of this review is to focus on various RIPs from plants associated with anti-HIV activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Literature estimates of metal-protein affinities are widely scattered for many systems, as highlighted by the class of metallo-chaperone proteins, which includes human Atox1. The discrepancies may be attributed to unreliable detection probes and/or inconsistent affinity standards. In this study, application of the four CuI ligand probes bicinchoninate, bathocuproine disulfonate, dithiothreitol (Dtt), and glutathione (GSH) is reviewed, and their CuI affinities are re-estimated and unified. Excess bicinchoninate or bathocuproine disulfonate reacts with CuI to yield distinct 1:2 chromatophoric complexes [CuIL2] 3- with formation constants β2 = 1017.2 and 1019.8 M-2, respectively. These constants do not depend on proton concentration for pH ≥7.0. Consequently, they are a pair of complementary and stable probes capable of detecting free Cu+ concentrations from 10-12 to 10-19 M. Dtt binds CuI with KD∼10-15 M at pH 7, but it is air-sensitive, and its CuI affinity varies with pH. The CuI binding properties of Atox1 and related proteins (including the fifth and sixth domains at the N terminus of the Wilson protein ATP7B) were assessed with these probes. The results demonstrate the following: (i) their use permits the stoichiometry of high affinity CuI binding and the individual quantitative affinities (KD values) to be determined reliably via noncompetitive and competitive reactions, respectively; (ii) the scattered literature values are unified by using reliable probes on a unified scale; and (iii) Atox1-type proteins bind CuI with sub-femtomolar affinities, consistent with tight control of labile Cu+ concentrations in living cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To survive within its host erythrocyte, Plasmodium falciparum must export hundreds of proteins across both its parasite plasma membrane and surrounding parasitophorous vacuole membrane, most of which are likely to use a protein complex known as PTEX (Plasmodium translocon of exported proteins). PTEX is a putative protein trafficking machinery responsible for the export of hundreds of proteins across the parasitophorous vacuole membrane and into the human host cell. Five proteins are known to comprise the PTEX complex, and in this study, three of the major stoichiometric components are investigated including HSP101 (a AAA+ ATPase), a protein of no known function termed PTEX150, and the apparent membrane component EXP2. We show that these proteins are synthesized in the preceding schizont stage (PTEX150 and HSP101) or even earlier in the life cycle (EXP2), and before invasion these components reside within the dense granules of invasive merozoites. From these apical organelles, the protein complex is released into the host cell where it resides with little turnover in the parasitophorous vacuole membrane for most of the remainder of the following cell cycle. At this membrane, PTEX is arranged in a stable macromolecular complex of >1230 kDa that includes an ∼600-kDa apparently homo-oligomeric complex of EXP2 that can be separated from the remainder of the PTEX complex using non-ionic detergents. Two different biochemical methods undertaken here suggest that PTEX components associate as EXP2-PTEX150-HSP101, with EXP2 associating with the vacuolar membrane. Collectively, these data support the hypothesis that EXP2 oligomerizes and potentially forms the putative membrane-spanning pore to which the remainder of the PTEX complex is attached.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Living in groups is a widespread phenomenon in the animal kingdom. For free-spawning aquatic animals, such as the abalone (Haliotis), being in the close proximity to potential mating partners enhances reproductive success. In this study, we investigated whether chemical cues could be present in abalone mucus that enable species-specific aggregation. A comparative MS analysis of mucus obtained from trailing or fixed stationary Haliotis asinina, and from seawater surrounding aggregations, indicated that water-soluble biomolecules are present and that these can stimulate sensory activity in conspecifics. Purified extracts of trail mucus contain at least three small proteins [termed H. asinina mucus-associated proteins (Has-MAPs)-1–3], which readily diffuse into the surrounding seawater and evoke a robust cephalic tentacle response in conspecifics. Mature Has-MAP-1 is approximately 9.9 kDa in size, and has a glycine-rich N-terminal region. Has-MAP-2 is approximately 6.2 kDa in size, and has similarities to schistosomin, a protein that is known to play a role in mollusc reproduction. The mature Has-MAP-3 is approximately 12.5 kDa in size, and could only be identified within trail mucus of animals outside of the reproductive season. All three Has-MAP genes are expressed at high levels within secretory cells of the juvenile abalone posterior pedal gland, consistent with a role in scent marking. We infer from these results that abalone mucus-associated proteins are candidate chemical cues that could provide informational cues to conspecifics living in close proximity and, given their apparent stability and hydrophilicity, animals further afield.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Pol protein of human immunodeficiency virus type 1 (HIV-1) harbours the viral enzymes critical for viral replication; protease (PR), reverse transcriptase (RT), and integrase (IN). PR, RT and IN are not functional in their monomeric forms and must come together as either dimers (PR), heterodimers (RT) or tetramers (IN) to be catalytically active. Our knowledge of the tertiary structures of the functional enzymes is well advanced, and substantial progress has recently been made towards understanding the precise steps leading from Pol protein synthesis through viral assembly to the release of active viral enzymes. This review will summarise our current understanding of how the Pol proteins, which are initially expressed as a Gag-Pol fusion product, are packaged into the assembling virion and discuss the maturation process that results in the release of the viral enzymes in their active forms. Our discussion will focus on the relationship between structure and function for each of the viral enzymes. This review will also provide an overview of the current status of inhibitors against the HIV-1 Pol proteins. Effective inhibitors of PR and RT are well established and we will discuss the next generation inhibitors of these enzymes as well recent investigations that have highlighted the potential of IN and RNase H as antiretroviral targets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All retroviruses contain two copies of genomic RNA that are linked noncovalently. The dimeric RNA of human immunodeficiency virus type 1 (HIV-1) undergoes rearrangement during virion maturation, whereby the dimeric RNA genome assumes a more stable conformation. Previously, we have shown that the packaging of the HIV-1 polymerase (Pol) proteins reverse transcriptase (RT) and integrase (IN) is essential for the generation of the mature RNA dimer conformation. Analysis of HIV-1 mutants that are defective in processing of Pol showed that these mutant virions contained altered dimeric RNA conformation, indicating that the mature RNA dimer conformation in HIV-1 requires the correct proteolytic processing of Pol. The HIV-1 Pol proteins are multimeric in their mature enzymatically active forms; RT forms a heterodimer, and IN appears to form a homotetramer. Using RT and IN multimerization defective mutants, we have found that dimeric RNA from these mutant virions has the same stability and conformation as wild-type RNA dimers, showing that the mature enzymatically active RT and IN proteins are dispensable for the generation of mature RNA dimer conformation. This also indicated that formation of the mature RNA dimer structure occurs prior to RT or IN maturation. We have also investigated the requirement of Pol for RNA dimerization in both Mason-Pfizer monkey virus (M-PMV) and Moloney murine leukemia virus (MoMuLV) and found that in contrast to HIV-1, Pol is dispensable for RNA dimer maturation in M-PMV and MoMuLV, demonstrating that the requirement of Pol in retroviral RNA dimer maturation is not conserved among all retroviruses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its small size and versatility, the biarsenical-tetracysteine system is an attractive way to label viral proteins for live cell imaging. This study describes the genetic labeling of the human immunodeficiency virus type 1 (HIV-1) structural proteins (matrix, capsid and nucleocapsid), enzymes (protease, reverse transcriptase, RNAse H and integrase) and envelope glycoprotein 120 with a tetracysteine tag in the context of a full-length virus. We measure the impact of these modifications on the natural virus infection and, most importantly, present the first infectious HIV-1 construct containing a fluorescently-labeled nucleocapsid protein. Furthermore, due to the high background levels normally associated with the labeling of tetracysteine-tagged proteins we have also optimized a metabolic labeling system that produces infectious virus containing the natural envelope glycoproteins and specifically labeled tetracysteine-tagged proteins that can easily be detected after virus infection of T-lymphocytes. This approach can be adapted to other viral systems for the visualization of the interplay between virus and host cell during infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ribosome-inactivating proteins (RIPs) are mainly present in plants and function to inhibit protein synthesis through the removal of adenine residues from eukaryotic ribosomal RNA (rRNA). They are broadly classified into two groups: type I and type II. Type I RIPs are a diverse family of proteins comprising a single polypeptide chain, whereas type II RIPs are heterodimeric glycoproteins comprising an A-chain (functionally equivalent to a type I RIP) linked via a disulphide bond to a B chain, mediating cell entry. In this review, we describe common type I and type II RIPs, their diverse biological functions, mechanism of cell entry, stability in plasma and antigenicity. We end with a discussion of promising applications for RIPs in biomedicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Multidrug Resistance Associated Proteins (MRPI, MRP2, MRP3, MRp4, MRp5, MRP6, MRP7, MRPS and MRP9) belong to the ATP-binding cassette superfamily (ABCC family) of transporters expressed differentially in the liver, kidney, intestine and blood-brain barrier. MRps transport a structurally diverse array of endo- and xenobiotics and their metabolites (in particular conjugates) and are subject to induction and inhibition by a variety of compounds. An increased efflux of natural product anticancer drugs and other anticancer agents by MRPs in cancer cells is associated with tumor resistance. These transporting proteins play a role in the absorption, distribution and elimination of various compounds in the body. There are increased reports on the clinical impact of genetic mutations of genes encoding MRP1-9. Therefore, MRPs have an important role in drug development, since a better understanding of their function and regulating mechanism can help minimize and avoid drug toxicity, unfavorable drug-drug interactions, and to overcome drug resistance.