991 resultados para uncertainty-functions
Resumo:
Hopanoids are bacterial surrogates of eukaryotic membrane sterols and among earth's most abundant natural products. Their molecular fossils remain in sediments spanning more than a billion years. However, hopanoid metabolism and function are not fully understood. Burkholderia species are environmental opportunistic pathogens that produce hopanoids and also occupy diverse ecological niches. We investigated hopanoids biosynthesis in Burkholderia cenocepacia by deletion mutagenesis and structural characterization of the hopanoids produced by the mutants. The enzymes encoded by hpnH and hpnG were essential for production of all C35 extended hopanoids, including bacteriohopanetetrol (BHT), BHT glucosamine and BHT cyclitol ether. Deletion of hpnI resulted in BHT production, while ΔhpnJ produced only BHT glucosamine. Thus, HpnI is required for BHT glucosamine production while HpnJ is responsible for its conversion to the cyclitol ether. The ΔhpnH and ΔhpnG mutants could not grow under any stress condition tested, whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.whereas ΔhpnI, ΔhpnJ and ΔhpnK displayed wild-type growth rates when exposed to detergent, but varying levels of sensitivity to low pH and polymyxin B. This study not only elucidates the biosynthetic pathway of hopanoids in B. cenocepacia, but also uncovers a biosynthetic role for the conserved proteins HpnI, HpnJ and HpnK in other hopanoid-producing bacteria.
Resumo:
For the computation of limit cycle oscillations (LCO) at transonic speeds, CFD is required to capture the nonlinear flow features present. The Harmonic Balance method provides an effective means for the computation of LCOs and this paper exploits its efficiency to investigate the impact of variability (both structural a nd aerodynamic) on the aeroelastic behaviour of a 2 dof aerofoil. A Harmonic Balance inviscid CFD solver is coupled with the structural equations and is validated against time marching analyses. Polynomial chaos expansions are employed for the stochastic investiga tion as a faster alternative to Monte Carlo analysis. Adaptive sampling is employed when discontinuities are present. Uncertainties in aerodynamic parameters are looked at first followed by the inclusion of structural variability. Results show the nonlinear effect of Mach number and it’s interaction with the structural parameters on supercritical LCOs. The bifurcation boundaries are well captured by the polynomial chaos.
Resumo:
Predictive Demand Response (DR) algorithms allow schedulable loads in power systems to be shifted to off-peak times. However, the size of the optimisation problems associated with predictive DR can grow very large and so efficient implementations of algorithms are desirable. In this paper Laguerre functions are used to significantly reduce the size of the optimisation needed to implement predictive DR, thus significantly increasing the efficiency of the implementation. © 2013 IEEE.
Resumo:
To provide in-time reactions to a large volume of surveil- lance data, uncertainty-enabled event reasoning frameworks for CCTV and sensor based intelligent surveillance system have been integrated to model and infer events of interest. However, most of the existing works do not consider decision making under uncertainty which is important for surveillance operators. In this paper, we extend an event reasoning framework for decision support, which enables our framework to predict, rank and alarm threats from multiple heterogeneous sources.
Resumo:
The Harmonic Balance method is an attractive solution for computing periodic responses and can be an alternative to time domain methods, at a reduced computational cost. The current paper investigates using a Harmonic Balance method for simulating limit cycle oscillations under uncertainty. The Harmonic Balance method is used in conjunction with a non-intrusive polynomial-chaos approach to propagate variability and is validated against Monte Carlo analysis. Results show the potential of the approach for a range of nonlinear dynamical systems, including a full wing configuration exhibiting supercritical and subcritical bifurcations, at a fraction of the cost of performing time domain simulations.
Resumo:
This paper presents a multi-agent system approach to address the difficulties encountered in traditional SCADA systems deployed in critical environments such as electrical power generation, transmission and distribution. The approach models uncertainty and combines multiple sources of uncertain information to deliver robust plan selection. We examine the approach in the context of a simplified power supply/demand scenario using a residential grid connected solar system and consider the challenges of modelling and reasoning with
uncertain sensor information in this environment. We discuss examples of plans and actions required for sensing, establish and discuss the effect of uncertainty on such systems and investigate different uncertainty theories and how they can fuse uncertain information from multiple sources for effective decision making in
such a complex system.
Resumo:
Knowledge is an important component in many intelligent systems.
Since items of knowledge in a knowledge base can be conflicting, especially if
there are multiple sources contributing to the knowledge in this base, significant
research efforts have been made on developing inconsistency measures for
knowledge bases and on developing merging approaches. Most of these efforts
start with flat knowledge bases. However, in many real-world applications, items
of knowledge are not perceived with equal importance, rather, weights (which
can be used to indicate the importance or priority) are associated with items of
knowledge. Therefore, measuring the inconsistency of a knowledge base with
weighted formulae as well as their merging is an important but difficult task. In
this paper, we derive a numerical characteristic function from each knowledge
base with weighted formulae, based on the Dempster-Shafer theory of evidence.
Using these functions, we are able to measure the inconsistency of the knowledge
base in a convenient and rational way, and are able to merge multiple knowledge
bases with weighted formulae, even if knowledge in these bases may be
inconsistent. Furthermore, by examining whether multiple knowledge bases are
dependent or independent, they can be combined in different ways using their
characteristic functions, which cannot be handled (or at least have never been
considered) in classic knowledge based merging approaches in the literature.
Resumo:
Gender profiling is a fundamental task that helps CCTV systems to
provide better service for intelligent surveillance. Since subjects being detected
by CCTVs are not always cooperative, a few profiling algorithms are proposed
to deal with situations when faces of subjects are not available, among which
the most common approach is to analyze subjects’ body shape information. In
addition, there are some drawbacks for normal profiling algorithms considered
in real applications. First, the profiling result is always uncertain. Second, for a
time-lasting gender profiling algorithm, the result is not stable. The degree of
certainty usually varies, sometimes even to the extent that a male is classified
as a female, and vice versa. These facets are studied in a recent paper [16] using
Dempster-Shafer theory. In particular, Denoeux’s cautious rule is applied for
fusion mass functions through time lines. However, this paper points out that if
severe mis-classification is happened at the beginning of the time line, the result
of applying Denoeux’s rule could be disastrous. To remedy this weakness,
in this paper, we propose two generalizations to the DS approach proposed in
[16] that incorporates time-window and time-attenuation, respectively, in applying
Denoeux’s rule along with time lines, for which the DS approach is a special
case. Experiments show that these two generalizations do provide better results
than their predecessor when mis-classifications happen.
Resumo:
Relatively few measurements of the solar phase function of cometary nuclei exist, despite the importance of this parameter in determining accurate sizes and its use in modeling surface properties. We make use of robotic telescopes and servicemode observing to monitor cometary nuclei over months at a time, combining intensive observations at a single epoch with regular short light-curve segments to efficiently account for brightness changes due to both nucleus rotation and changing solar phase angle. We present our latest results on comets 8P/Tuttle, 14P/Wolf, 67P/Churyumov- Gerasimenko and 110P/Hartley 3.