948 resultados para transverse magnetic field
Resumo:
During Ocean Drilling Program Leg 134 (Vanuatu), geological high sensitivity magnetic tools (GHMT) developed by CEA-LETI and TOTAL were used at two drill sites. GHMT combine two sensors, a proton magnetometer for total magnetic field measurements with an operational accuracy of 0.1 nanoteslas (nT), and a highly sensitive induction tool to measure the magnetic susceptibility with an operational accuracy of a few 10**-6 SI units. Hole 829A was drilled through an accretionary prism and the downhole measurements of susceptibility correlate well with other well-log physical properties. Sharp susceptibility contrasts between chalk and volcanic silt sediment provide complementary data that help define the lithostratigraphic units. At Hole 831B magnetic susceptibility and total field measurements were performed through a 700-m reef carbonate sequence of a guyot deposited on top of an andesitic volcano. The downhole magnetic susceptibility is very low and the amplitude of peak-to-peak anomalies is less than a few 10**-5 SI units. Based on the repeatability of the measurements, the accuracy of the magnetic logging measurements was demonstrated to be excellent. Total magnetic field data at Hole 831B reveal low magnetic anomalies of 0.5 to 5 nT and the measurement of a complete repeat section indicates an accuracy of 0.1 to 0.2 nT. Due to the inclination of the earth's magnetic field in this area (~-40°) and the very low magnetic susceptibility of the carbonate, the contribution of the induced magnetization to the total field measured in the hole is negligible. Unfortunately, because the core recovery was extremely poor (<5%) no detailed comparison between the core measurements and the downhole magnetic data could be made. Most samples have a diamagnetic susceptibility and very low intensity of remanent magnetization (< 10**-4 A/m), but a few samples have a stable remanent magnetization up to 0.005 A/m. These variations of the intensity of the remanent magnetization suggest a very heterogeneous distribution of the magnetization in the carbonate sequence that could explain the magnetic field anomalies measured in these weakly magnetized rocks.
Resumo:
Magnetic field and susceptibility data were collected using the geological high-resolution magnetometer tool string (GHMT) at three sites during Ocean Drilling Program Leg 162. Postcruise processing of the magnetic field data yielded a polarity stratigraphy for Holes 986C and 987E. A magnetic susceptibility record was measured at Hole 984B. Detailed analysis of the core and log susceptibility records at Hole 984B yielded an empirical tool resolution of the susceptibility measurement tool (SUMT) of 53 cm. At Site 984, where sedimentation rates were typically >10 cm/k.y., this gave a resolution of at least ~5000 yr. This data report summarizes the GHMT postcruise processing, method of interpretation, and analysis of the SUMT resolution.
Resumo:
The relative paleointensity (RPI) method assumes that the intensity of post depositional remanent magnetization (PDRM) depends exclusively on the magnetic field strength and the concentration of the magnetic carriers. Sedimentary remanence is regarded as an equilibrium state between aligning geomagnetic and randomizing interparticle forces. Just how strong these mechanical and electrostatic forces are, depends on many petrophysical factors related to mineralogy, particle size and shape of the matrix constituents. We therefore test the hypothesis that variations in sediment lithology modulate RPI records. For 90 selected Late Quaternary sediment samples from the subtropical and subantarctic South Atlantic Ocean a combined paleomagnetic and sedimentological dataset was established. Misleading alterations of the magnetic mineral fraction were detected by a routine Fe/kappa test (Funk, J., von Dobeneck, T., Reitz, A., 2004. Integrated rock magnetic and geochemical quantification of redoxomorphic iron mineral diagenesis in Late Quaternary sediments from the Equatorial Atlantic. In: Wefer, G., Mulitza, S., Ratmeyer, V. (Eds.), The South Atlantic in the Late Quaternary: reconstruction of material budgets and current systems. Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, pp. 239-262). Samples with any indication of suboxic magnetite dissolution were excluded from the dataset. The parameters under study include carbonate, opal and terrigenous content, grain size distribution and clay mineral composition. Their bi- and multivariate correlations with the RPI signal were statistically investigated using standard techniques and criteria. While several of the parameters did not yield significant results, clay grain size and chlorite correlate weakly and opal, illite and kaolinite correlate moderately to the NRM/ARM signal used here as a RPI measure. The most influential single sedimentological factor is the kaolinite/illite ratio with a Pearson's coefficient of 0.51 and 99.9% significance. A three-member regression model suggests that matrix effects can make up over 50% of the observed RPI dynamics.
Resumo:
This paper evaluates a new, low-frequency finite-difference time-domain method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretization of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modelling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multi-layered spherical phantom model and a complete body model. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
A method is presented for calculating the winding patterns required to design independent zonal and tesseral biplanar shim coils for magnetic resonance imaging. Streamline, target-field, Fourier integral and Fourier series methods are utilized. For both Fourier-based methods, the desired target field is specified on the surface of the conducting plates. For the Fourier series method it is possible to specify the target field at additional depths interior to the two conducting plates. The conducting plates are confined symmetrically in the xy plane with dimensions 2a x 2b, and are separated by 2d in the z direction. The specification of the target field is symmetric for the Fourier integral method, but can be over some asymmetric portion pa < x < qa and sb < y < tb of the coil dimensions (-1 < p < q < 1 and -1 < s < t < 1) for the Fourier series method. Arbitrary functions are used in the outer sections to ensure continuity of the magnetic field across the entire coil face. For the Fourier series case, the entire field is periodically extended as double half-range sine or cosine series. The resultant Fourier coefficients are substituted into the Fourier series and integral expressions for the internal and external magnetic fields, and stream functions on both the conducting surfaces. A contour plot of the stream function directly gives the required coil winding patterns. Spherical harmonic analysis of field calculations from a ZX shim coil indicates that example designs and theory are well matched.
Resumo:
Shell-crosslinked knedel-like nanoparticles (SCKs; knedel is a Polish term for dumplings) were derivatized with gadolinium Shell chelates and studied as robust magnetic-resonance-imaging-active structures with hydrodynamic diameters of 40 +/- 3 nm. SCKs possessing an amphiphilic core-shell morphology were produced from the aqueous assembly of diblock copolymers of poly(acrylic acid) (PAA) and poly(methyl acrylate) (PMA), PAA(52)-b-PMA(128), and subsequent covalent crosslinking by amidation upon reaction with 2,2'-(ethylenedioxy)bis(ethylamine) throughout the shell layer. The properties of these materials, including non-toxicity towards mammalian cells, non-immunogenicity within mice, and capability for polyvalent targeting, make them ideal candidates for utilization within biological systems. The synthesis of SCKs derivatized with Gd-III and designed for potential use as a unique nanometer-scale contrast agent for MRI applications is described herein. Utilization of an amino-functionalized diethylenetriaminepentaacetic acid-Gd analogue allowed for direct covalent conjugation throughout the hydrophilic shell layer of the SCKs and served to increase the rotational correlation lifetime of the Gd. In addition, the highly hydrated nature of the shell layer in which the Gd was located allowed for rapid water exchange; thus, the resulting material demonstrated large ionic relaxivities (39 s(-1) mM(-1)) in an applied magnetic field of 0.47 T at 40 degrees C and, as a result of the large loading capacity of the material, also demonstrated high molecular relaxivities (20 000 s(-1) mM(-1)).
Resumo:
An inverse methodology for the design of biologically loaded radio-frequency (RF) coils for magnetic resonance imaging applications is described. Free space time-harmonic electromagnetic Green's functions and de-emphasized B-1 target fields are used to calculate the current density on the coil cylinder. In theory, with the B-1 field de-emphasized in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the central overemphasis effect caused by field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T (170 MHz) is calculated using an inverse methodology with de-emphasized B-1. target fields. An in-house finite-difference time-domain routine is employed to evaluate B-1 field and signal intensity inside a homogenous cylindrical phantom and then a complete human head model. A comparison with a conventional RF birdcage coil is carried out and demonstrates that this method can help in decreasing the normal bright region caused by field/tissue interactions in head images at 170 MHz and higher field strengths.
Resumo:
In modern magnetic resonance imaging, both patients and health care workers are exposed to strong. non-uniform static magnetic fields inside and outside of the scanner. In which body movement may be able to induce electric currents in tissues which could be potentially harmful. This paper presents theoretical investigations into the spatial distribution of induced E-fields in a tissue-equivalent human model when moving at various positions around the magnet. The numerical calculations are based on an efficient. quasi-static, finite-difference scheme. Three-dimensional field profiles from an actively shielded 4 T magnet system are used and the body model projected through the field profile with normalized velocity. The simulation shows that it is possible to induce E-fields/currents near the level of physiological significance under some circumstances and provides insight into the spatial characteristics of the induced fields. The methodology presented herein can be extrapolated to very high field strengths for the evaluation of the effects of motion at a variety of field strengths and velocities. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Time-harmonic methods are required in the accurate design of RF coils as operating frequency increases. This paper presents such a method to find a current density solution on the coil that will induce some desired magnetic field upon an asymmetrically located target region within. This inverse method appropriately considers the geometry of the coil via a Fourier series expansion, and incorporates some new regularization penalty functions in the solution process. A new technique is introduced by which the complex, time-dependent current density solution is approximated by a static coil winding pattern. Several winding pattern solutions are given, with more complex winding patterns corresponding to more desirable induced magnetic fields.
Resumo:
The efficiency of numerous mineral processing operations can be determined by measuring the magnetic properties of the process streams. This measurement, if done at all, is currently performed by laboratory testing of spot samples. This is an inherently slow process and, where feed grades are variable, optimum performance is generally not achieved. This paper describes the rapid measurement of the magnetic properties of minerals. AC measurement techniques, including the analysis of the phase component of the magnetic vector; frequency dependent magnetic susceptibility and the effect of applied magnetic field strength will be discussed. Industrial applications in mineral sands, copper smelting, ferrosilicon testing and drill core scanning will be reported. (C) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Most magnetic resonance imaging (MRI) spatial encoding techniques employ low-frequency pulsed magnetic field gradients that undesirably induce multiexponentially decaying eddy currents in nearby conducting structures of the MRI system. The eddy currents degrade the switching performance of the gradient system, distort the MRI image, and introduce thermal loads in the cryostat vessel and superconducting MRI components. Heating of superconducting magnets due to induced eddy currents is particularly problematic as it offsets the superconducting operating point, which can cause a system quench. A numerical characterization of transient eddy current effects is vital for their compensation/control and further advancement of the MRI technology as a whole. However, transient eddy current calculations are particularly computationally intensive. In large-scale problems, such as gradient switching in MRI, conventional finite-element method (FEM)-based routines impose very large computational loads during generation/solving of the system equations. Therefore, other computational alternatives need to be explored. This paper outlines a three-dimensional finite-difference time-domain (FDTD) method in cylindrical coordinates for the modeling of low-frequency transient eddy currents in MRI, as an extension to the recently proposed time-harmonic scheme. The weakly coupled Maxwell's equations are adapted to the low-frequency regime by downscaling the speed of light constant, which permits the use of larger FDTD time steps while maintaining the validity of the Courant-Friedrich-Levy stability condition. The principal hypothesis of this work is that the modified FDTD routine can be employed to analyze pulsed-gradient-induced, transient eddy currents in superconducting MRI system models. The hypothesis is supported through a verification of the numerical scheme on a canonical problem and by analyzing undesired temporal eddy current effects such as the B-0-shift caused by actively shielded symmetric/asymmetric transverse x-gradient head and unshielded z-gradient whole-body coils operating in proximity to a superconducting MRI magnet.
Resumo:
The magnetic field of the Earth has for long been known to influence the behaviour and orientation of a variety of living organisms. Experimental studies of the magnetic sense have, however, been impaired by the lack of a plausible cellular and/or molecular mechanism providing meaningful explanation for detection of magnetic fields by these organisms. Recently, mechanosensitive (MS) ion channels have been implied to play a role in magnetoreception. In this study we have investigated the effect of static magnetic fields (SMFs) of moderate intensity on the activity and gadolinium block of MscL, the bacterial MS channel of large conductance, which has served as a model channel to study the basic physical principles of mechanosensory transduction in living cells. In addition to showing that direct application of the magnetic field decreased the activity of the MscL channel, our study demonstrates for the first time that SMFs can reverse the effect of gadolinium, a well-known blocker of MS channels. The results of our study are consistent with a notion that (1) the effects of SMFs on the MscL channels may result from changes in physical properties of the lipid bilayer due to diamagnetic anisotropy of phospholipid molecules and consequently (2) cooperative superdiamagnetism of phospholipid molecules under influence of SMFs could cause displacement of Gd3+ stop ions from the membrane bilayer and thus remove the MscL channel block.
Resumo:
This paper evaluates a low-frequency FDTD method applied to the problem of induced E-fields/eddy currents in the human body resulting from the pulsed magnetic field gradients in MRI. In this algorithm, a distributed equivalent magnetic current (DEMC) is proposed as the electromagnetic source and is obtained by quasistatic calculation of the empty coil's vector potential or measurements therein. This technique circumvents the discretizing of complicated gradient coil geometries into a mesh of Yee cells, and thereby enables any type of gradient coil modeling or other complex low frequency sources. The proposed method has been verified against an example with an analytical solution. Results are presented showing the spatial distribution of gradient-induced electric fields in a multilayered spherical phantom model and a complete body model.