991 resultados para thin plate spine


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently, it was found that the ferromagnetic SrRuO3 when combined with another ferromagnet in thin film form gives rise to exchange bias (EB) effect. However, we observed EB in single, strained, SrRuO3 thin films grown on diamagnetic LaAlO3 (100) substrates. It displays the training effect, which essentially confirms EB. The temperature dependence of the EB reveals the blocking temperature to be around similar to 75 K. The strength of the exchange bias decreases with the increase in thickness of the film. We observe tensile strain in the out of plane direction. Further, the presence of in-plane compressive strain is observed through asymmetric reciprocal space mapping. Finally, we find a direct link between strain and EB. The evolution of strain with thickness matches well with the nature of scaled EB. It has been shown earlier by first principle calculations that this strain can induce EB in thin films. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bi1-xCaxMnO3 (BCMO) thin films with x = 0, 0.1, 0.2, 0.3 and 0.4 are successfully deposited on the n-type Si (100) substrate at two different temperatures of 400 degrees C and 800 degrees C using RF magnetron sputtering. The stoichiometry of the films and oxidation state of the elements have been described by X-ray photoelectron spectroscopy analysis. Dielectric measurement depicts the insulating property of BCMO films. Magnetic and ferroelectric studies confirm the significant enhancement in spin orientation as well as electric polarization at room temperature due to incorporation of Ca2+ ions into BiMnO3 films. The BCMO (x = 0.2) film grown at 400 degrees C shows better magnetization (M-sat) and polarization (P-s) with the measured values of 869 emu / cc and 6.6 mu(C)/cm(2) respectively than the values of the other prepared films. Thus the realization of room temperature ferromagnetic and ferroelectric ordering in Ca2+ ions substituted BMO films makes potentially interesting for spintronic device applications. (C) 2014 Author(s).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A layer-by-layer (LbL) approach has been employed for the fabrication of multilayer thin films and microcapsules having nanofibrous morphology using nanocrystalline cellulose (NCC) as one of the components of the assembly. The applicability of these nanoassemblies as drug delivery carriers has been explored by the loading of an anticancer drug, doxorubicin hydrochloride, and a water-insoluble drug, curcumin. Doxorubicin hydrochloride, having a good water solubility, is postloaded in the assembly. In the case of curcumin, which is very hydrophobic and has limited solubility in water, a stable dispersion is prepared via noncovalent interaction with NCC prior to incorporation in the LbL assembly. The interaction of various other lipophilic drugs with NCC was analyzed theoretically by molecular docking in consideration of NCC as a general carrier for hydrophobic drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In epitaxially grown alloy thin films, spinodal decomposition may be promoted or suppressed depending on the sign of the epitaxial strain. We study this asymmetry by extending Cahn's linear theory of spinodal decomposition to systems with a composition dependent lattice parameter and modulus (represented by Vegard's law coefficients, GRAPHICS] and y, respectively), and an imposed (epitaxial) strain (e). We show analytically (and confirm using simulations) that the asymmetric effect of epitaxial strains arises only in elastically inhomogeneous systems. Specifically, we find good agreement between analytical and simulation results for the wave number GRAPHICS] of the fastest growing composition fluctuation. The asymmetric effect due to epitaxial strain also extends to microstructure formation: our simulations show islands of elastically softer (harder) phase with (without) a favourable imposed strain. We discuss the implications of these results to GeSi thin films on Si and Ge substrates, as well as InGaAs films on GaAs substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

All solid state batteries are essential candidate for miniaturizing the portable electronics devices. Thin film batteries are constructed by layer by layer deposition of electrode materials by physical vapour deposition method. We propose a promising novel method and unique architecture, in which highly porous graphene sheet embedded with SnO2 nanowire could be employed as the anode electrode in lithium ion thin film battery. The vertically standing graphene flakes were synthesized by microwave plasma CVD and SnO2 nanowires based on a vapour-liquid-solid (VLS) mechanism via thermal evaporation at low synthesis temperature (620 degrees C). The graphene sheet/SnO2 nanowire composite electrode demonstrated stable cycling behaviours and delivered a initial high specific discharge capacity of 1335 mAh g(-1) and 900 mAh g(-1) after the 50th cycle. Furthermore, the SnO2 nanowire electrode displayed superior rate capabilities with various current densities.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The preparation of semisolid slurry of A356 aluminum alloy using an oblique plate was investigated. A356 alloy melt undergoes partial solidification when it flows down on an oblique plate cooled from underneath by counter flowing water. It results in continuous formation of columnar dendrites on plate wall. Due to forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously to produce semisolid slurry at plate exit. Melt pouring temperature provides required condition of solidification whereas plate inclination enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained was solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets were heat treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets were analyzed. Effects of melt pouring temperature and plate inclination on solidification and microstructure of billets produced using oblique plate were described. The investigations involved four different melt pouring temperatures (620, 625, 630 and 635 degrees C) associated with four different plate inclinations (30 degrees, 45 degrees, 60 degrees and 75 degrees). Melt pouring temperature of 625 degrees C with plate inclination of 60 degrees shows fine and globular microstructures and it is the optimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amorphous W-S-N in the form of thin films has been identified experimentally as an ultra-low friction material, enabling easy sliding by the formation of a WS2 tribofilm. However, the atomic-level structure and bonding arrangements in amorphous W-S-N, which give such optimum conditions for WS2 formation and ultra-low friction, are not known. In this study, amorphous thin films with up to 37 at.% N are deposited, and experimental as well as state-of-the-art ab initio techniques are employed to reveal the complex structure of W-S-N at the atomic level. Excellent agreement between experimental and calculated coordination numbers and bond distances is demonstrated. Furthermore, the simulated structures are found to contain N bonded in molecular form, i.e. N-2, which is experimentally confirmed by near edge X-ray absorption fine structure and X-ray photoelectron spectroscopy analysis. Such N-2 units are located in cages in the material, where they are coordinated mainly by S atoms. Thus this ultra-low friction material is shown to be a complex amorphous network of W, S and N atoms, with easy access to W and S for continuous formation of WS2 in the contact region, and with the possibility of swift removal of excess nitrogen present as N-2 molecules. (C) 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat transfer rate and pressure measurements were made upstream of surface pro-tuberances on a flat plate and a sharp cone subjected to hypersonic flow in a conventional shock tunnel. Heat flux was measured using platinum thin-film sensors deposited on macor substrate and the pressure measurements were made using fast acting piezoelectric sensors. A distinctive hot spot with highest heat flux was obtained near the foot of the protuberance due to heavy vortex activity in the recirculating region. Schlieren flow visualization was used to capture the shock structures and the separation distance ahead of the protrusions was quantitatively measured for varying protuberance heights. A computational analysis was conducted on the flat plate model using commercial computational fluid dynamics software and the obtained trends of heat flux and pressure were compared with the experimental observation. Experiments were also conducted by physically disturbing the laminar boundary layer to check its effect on the magnitude of the hot spot heat flux. In addition to air, argon was also used as test gas so that the Reynolds number can be varied. (C) 2014 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal dimension based damage detection method is investigated for a composite plate with random material properties. Composite material shows spatially varying random material properties because of complex manufacturing processes. Matrix cracks are considered as damage in the composite plate. Such cracks are often seen as the initial damage mechanism in composites under fatigue loading and also occur due to low velocity impact. Static deflection of the cantilevered composite plate with uniform loading is calculated using the finite element method. Damage detection is carried out based on sliding window fractal dimension operator using the static deflection. Two dimensional homogeneous Gaussian random field is generated using Karhunen-Loeve (KL) expansion to represent the spatial variation of composite material property. The robustness of fractal dimension based damage detection method is demonstrated considering the composite material properties as a two dimensional random field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, thin films of cobalt oxide (Co3O4) have been grown by the metal-organic chemical vapor deposition (MOCVD) technique on stainless steel substrate at two preferred temperatures (450 degrees C and 500 degrees C), using cobalt acetylacetonate dihydrate as precursor. Spherical as well as columnar microstructures of Co3O4 have been observed under controlled growth conditions. Further investigations reveal these films are phase-pure, well crystallized and carbon-free. High-resolution TEM analysis confirms that each columnar structure is a continuous stack of minute crystals. Comparative study between these Co3O4 films grown at 450 degrees C and 500 degrees C has been carried out for their application as negative electrodes in Li-ion batteries. Our method of electrode fabrication leads to a coating of active material directly on current collector without any use of external additives. A high specific capacity of 1168 micro Ah cm(-2) mu m(-1) has been measured reproducibly for the film deposited at 500 degrees C with columnar morphology. Further, high rate capability is observed when cycled at different current densities. The Co3O4 electrode with columnar structure has a specific capacity 38% higher than the electrode with spherical microstructure (grown at 450 degrees C). Impedance measurements on the Co3O4 electrode grown at 500 degrees C also carried out to study the kinetics of the electrode process. (C) 2014 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear stability analysis of a plane Couette flow of an Oldroyd-B viscoelastic fluid past a flexible solid medium is carried out to investigate the role of polymer addition in the stability behavior. The system consists of a viscoelastic fluid layer of thickness R, density rho, viscosity eta, relaxation time lambda, and retardation time beta lambda flowing past a linear elastic solid medium of thickness HR, density rho, and shear modulus G. The emphasis is on the high-Reynolds-number wall-mode instability, which has recently been shown in experiments to destabilize the laminar flow of Newtonian fluids in soft-walled tubes and channels at a significantly lower Reynolds number than that for flows in rigid conduits. For Newtonian fluids, the linear stability studies have shown that the wall modes become unstable when flow Reynolds number exceeds a certain critical value Re c which scales as Sigma(3/4), where Reynolds number Re = rho VR/eta, V is the top-plate velocity, and dimensionless parameter Sigma = rho GR(2)/eta(2) characterizes the fluid-solid system. For high-Reynolds-number flow, the addition of polymer tends to decrease the critical Reynolds number in comparison to that for the Newtonian fluid, indicating a destabilizing role for fluid viscoelasticity. Numerical calculations show that the critical Reynolds number could be decreased by up to a factor of 10 by the addition of small amount of polymer. The critical Reynolds number follows the same scaling Re-c similar to Sigma(3/4) as the wall modes for a Newtonian fluid for very high Reynolds number. However, for moderate Reynolds number, there exists a narrow region in beta-H parametric space, corresponding to very dilute polymer solution (0.9 less than or similar to beta < 1) and thin solids (H less than or similar to 1.1), in which the addition of polymer tends to increase the critical Reynolds number in comparison to the Newtonian fluid. Thus, Reynolds number and polymer properties can be tailored to either increase or decrease the critical Reynolds number for unstable modes, thus providing an additional degree of control over the laminar-turbulent transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the first detailed study of the kinetics of dispersion of nanoparticles in thin polymer films using temperature dependent in situ X-ray scattering measurements. We show a comparably enhanced dispersion at higher temperatures for systems which are otherwise phase segregated at room temperature. Detailed analysis of the time dependent X-ray reflectivity and diffuse scattering data allows us to explore the out-of-plane and in-plane mobility of the nanoparticles in the polymer films. While the out-of-plane motion is diffusive with a diffusion coefficient almost two orders of magnitude lower than that expected in bulk polymer, the in-plane one is found to be super-diffusive resulting in significantly larger in-plane displacement at similar time scales. We discuss the origin of the observed highly anisotropic motion of nanoparticles due to their slaved motion with respect to the anisotropic chain orientation and consequent diffusivity anisotropy of matrix chains. We also suggest strategies to utilize these observations to kinetically improve dispersion in otherwise thermodynamically segregated polymer nanocomposite films.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A356 alloy melt solidifies partially when it flows down on an oblique plate cooled from bottom by counter flowing water. Columnar dendrites are continuously formed on the plate wall. Because of the forced convection, these dendrites are sheared off into equiaxed/fragmented grains and then washed away continuously by producing semisolid slurry at plate exit. Plate cooling rate provides required extent/amount of solidification whereas plate length enables necessary shear for producing semisolid slurry of desired quality. Slurry obtained is solidified in metal mould to produce semisolid-cast billets of desired microstructure. Furthermore, semisolid-cast billets are also heat-treated to improve surface quality. Microstructures of both semisolid-cast and heat-treated billets are compared. The effects of plate length and plate cooling rate on solidification and microstructure of billets produced by using oblique plate are illustrated. Three different plate lengths (200 mm, 250 mm, 300 mm) associated with three different heat transfer coefficients (1000, 2000 and 2500 W/(m(2).K)) are involved. Plate length of 250 mm with heat transfer coefficient of 2000 W/(m(2).K) gives fine and globular microstructures and is the optimum as there is absolutely no possibility of sticking of slurry to plate wall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present work, Li2-x MnO3-y (LMO) thin films have been deposited by radio frequency (RF) reactive magnetron sputtering using acid-treated Li2MnO3 powder target. Systematic investigations have been carried out to study the effect of RF power on the physicochemical properties of LMO thin films deposited on platinized silicon substrates. X-ray diffraction, electron microscopy, surface chemical analysis and electrochemical studies were carried out for the LMO films after post deposition annealing treatment at 500 A degrees C for 1 h in air ambience. Galvanostatic charge discharge studies carried out using the LMO thin film electrodes, delivered a highest discharge capacity of 139 mu Ah mu m(-1) cm(-2) in the potential window 2.0-3.5 V vs. Li/Li+ at 100 W RF power and lowest discharge capacity of 80 mu Ah mu m(-1) cm(-2) at 75 W RF power. Thereafter, the physicochemical properties of LMO films deposited using optimized RF power 100 W on stainless steel substrates has been studied in the thickness range of 70 to 300 nm as a case study. From the galvanostatic charge discharge experiments, a stable discharge capacity of 68 mu Ah mu m(-1) cm(-2) was achieved in the potential window 2.0-4.2 V vs. Li/Li+ tested up to 30 cycles. As the thickness increased, the specific discharge capacity started reducing with higher magnitude of capacity fading.