969 resultados para subsurface pipes
Resumo:
The stratified oil-water flow pattern is common in the petroleum industry, especially in offshore directional wells and pipelines. Previous studies have shown that the phenomenon of flow pattern transition in stratified flow can be related to the interfacial wave structure (problem of hydrodynamic instability). The study of the wavy stratified flow pattern requires the characterization of the interfacial wave properties, i.e., average shape, celerity and geometric properties (amplitude and wavelength) as a function of holdup, inclination angle and phases' relative velocity. However, the data available in the literature on wavy stratified flow is scanty, especially in inclined pipes and when oil is viscous. This paper presents new geometric and kinematic interfacial wave properties as a function of a proposed two-phase Froude number in the wavy-stratified liquid-liquid flow. The experimental work was conducted in a glass test line of 12 m and 0.026 m id., oil (density and viscosity of 828 kg/m(3) and 0.3 Pa s at 20 degrees C, respectively) and water as the working fluids at several inclinations from horizontal (-20 degrees, -10 degrees, 0 degrees, 10 degrees, 20 degrees). The results suggest a physical relation between wave shape and the hydrodynamic stability of the stratified liquid-liquid flow pattern. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
This study evaluated the capacity of fluoride acidic dentifrices (pH 4.5) to promote enamel remineralization using a pH cycling model, comparing them with a standard dentifrice (1,100 µgF/g). Enamel blocks had their surface polished and surface hardness determined (SH). Next, they were submitted to subsurface enamel demineralization and to post-demineralization surface hardness analysis. The blocks were divided into 6 experimental groups (n=10): placebo (without F, pH 4.5, negative control), 275, 412, 550, 1,100 µgF/g and a standard dentifrice (positive control). The blocks were submitted to pH cycling for 6 days and treatment with dentifrice slurries twice a day. After pH cycling, surface and cross-sectional hardness were assessed to obtain the percentage of surface hardness recovery (%SHR) and the integrated loss of subsurface hardness (ΔKHN). The results showed that %SHR was similar among acidic dentifrices with 412, 550, 1,100 µgF/g and to the positive control (Tukey's test; p>0.05). For ΔKHN, the acidic dentifrice with 550 µg F/g showed a better performance when compared with the positive control. It can be concluded that acidic dentifrice 550 µgF/g had similar remineralization capacity to that of positive control.
Resumo:
This in vitro study evaluated the preventive potential of experimental pastes containing 10% and 20% hydroxyapatite nanoparticles (Nano-HAP), with or without fluoride, on dental demineralization. Bovine enamel (n=15) and root dentin (n=15) specimens were divided into 9 groups according to their surface hardness: control (without treatment), 20 Nanop paste (20% HAP), 20 Nanop paste plus (20% HAP + 0.2% NaF), 10 Nanop paste (10% HAP), 10 Nanop paste plus (10% HAP + 0.2% NaF), placebo paste (without fluoride and HAP), fluoride paste (0.2% NaF), MI paste (CPP-ACP, casein phosphopeptide-amorphous calcium phosphate), and MI paste plus (CPP-ACP + 0.2% NaF). Both MI pastes were included as commercial control products containing calcium phosphate. The specimens were treated with the pastes twice a day (1 min), before and after demineralization. The specimens were subjected to a pH-cycling model (demineralization–6-8 h/ remineralization-16-18 h a day) for 7 days. The dental subsurface demineralization was analyzed using cross-sectional hardness (kgf/mm 2 , depth 10-220 µm). Data were tested using repeated-measures two-way ANOVA and Bonferroni's test (p<0.05). The only treatment able to reduce the loss of enamel and dentin subsurface hardness was fluoride paste (0.2% NaF), which differed significantly from the control at 30- and 50-µm depth (p<0.0001). The other treatments were not different from each other or compared with the control. The experimental Nanop pastes, regardless of the addition of fluoride, were unable to reduce dental demineralization in vitro.
Resumo:
This study compared dentine demineralization induced by in vitro and in situ models, and correlated dentine surface hardness (SH), cross-sectional hardness (CSH) and mineral content by transverse microradiography (TMR). Bovine dentine specimens (n = 15/group) were demineralized in vitro with the following: MC gel (6% carboxymethylcellulose gel and 0.1 m lactic acid, pH 5.0, 14 days); buffer I (0.05 m acetic acid solution with calcium, phosphate and fluoride, pH 4.5, 7 days); buffer II (0.05 m acetic acid solution with calcium and phosphate, pH 5.0, 7 days), and TEMDP (0.05 m lactic acid with calcium, phosphate and tetraethyl methyl diphosphonate, pH 5.0, 7 days). In an in situ study, 11 volunteers wore palatal appliances containing 2 bovine dentine specimens, protected with a plastic mesh to allow biofilm development. The volunteers dripped a 20% sucrose solution on each specimen 4 times a day for 14 days. In vitro and in situ lesions were analyzed using TMR and statistically compared by ANOVA. TMR and CSH/SH were submitted to regression and correlation analysis (p < 0.05). The in situ model produced a deep lesion with a high R value, but with a thin surface layer. Regarding the in vitro models, MC gel produced only a shallow lesion, while buffers I and II as well as TEMDP induced a pronounced subsurface lesion with deep demineralization. The relationship between CSH and TMR was weak and not linear. The artificial dentine carious lesions induced by the different models differed significantly, which in turn might influence further de- and remineralization processes. Hardness analysis should not be interpreted with respect to dentine mineral loss
Resumo:
Among the soils in the Mato Grosso do Sul, stand out in the Pantanal biome, the Spodosols. Despite being recorded in considerable extensions, few studies aiming to characterize and classify these soils were performed. The purpose of this study was to characterize and classify soils in three areas of two physiographic types in the Taquari river basin: bay and flooded fields. Two trenches were opened in the bay area (P1 and P2) and two in the flooded field (P3 and P4). The third area (saline) with high sodium levels was sampled for further studies. In the soils in both areas the sand fraction was predominant and the texture from sand to sandy loam, with the main constituent quartz. In the bay area, the soil organic carbon in the surface layer (P1) was (OC) > 80 g kg-1, being diagnosed as Histic epipedon. In the other profiles the surface horizons had low OC levels which, associated with other properties, classified them as Ochric epipedons. In the soils of the bay area (P1 and P2), the pH ranged from 5.0 to 7.5, associated with dominance of Ca2+ and Mg2+, with base saturation above 50 % in some horizons. In the flooded fields (P3 and P4) the soil pH ranged from 4.9 to 5.9, H+ contents were high in the surface horizons (0.8-10.5 cmol c kg-1 ), Ca2+ and Mg² contents ranged from 0.4 to 0.8 cmol c kg-1 and base saturation was < 50 %. In the soils of the bay area (P1 and P2) iron was accumulated (extracted by dithionite - Fed) and OC in the spodic horizon; in the P3 and P4 soils only Fed was accumulated (in the subsurface layers). According to the criteria adopted by the Brazilian System of Soil Classification (SiBCS) at the subgroup level, the soils were classified as: P1: Organic Hydromorphic Ferrohumiluvic Spodosol. P2: Typical Orthic Ferrohumiluvic Spodosol. P3: Typical Hydromorphic Ferroluvic Spodosol. P4: Arenic Orthic Ferroluvic Spodosol.
Resumo:
Leaching of nitrate (NO3-) can increase the groundwater concentration of this anion and reduce the agronomical effectiveness of nitrogen fertilizers. The main soil property inversely related to NO3- leaching is the anion exchange capacity (AEC), whose determination is however too time-consuming for being carried out in soil testing laboratories. For this reason, this study evaluated if more easily measurable soil properties could be used to estimate the resistance of subsoils to NO3- leaching. Samples from the subsurface layer (20-40 cm) of 24 representative soils of São Paulo State were characterized for particle-size distribution and for chemical and electrochemical properties. The subsoil content of adsorbed NO3- was calculated from the difference between the NO3- contents extracted with 1 mol L-1 KCl and with water; furthermore, NO3- leaching was studied in miscible displacement experiments. The results of both adsorption and leaching experiments were consistent with the well-known role exerted by AEC on the nitrate behavior in weathered soils. Multiple regression analysis indicated that in subsoils with (i) low values of remaining phosphorus (Prem), (ii) low soil pH values measured in water (pH H2O), and (iii) high pH values measured in 1 moL L-1 KCl (pH KCl), the amounts of surface positive charges tend to be greater. For this reason, NO3- leaching tends to be slower in these subsoils, even under saturated flow condition.
Resumo:
Lead and copper concentrations in drinking water increase considerably on going from municipality reservoirs to the households sampled in Ribeirão Preto (SP-Brazil). Flushing of only 3 liters of water reduced metal concentrations by more than 50%. Relatively small changes in water pH rapidly affected corrosion processes in lead pipes, while water hardness appeared to have a long-term effect. This approach aims to encourage University teachers to use its content as a case study in disciplines of Instrumental Analytical Chemistry and consequently increase knowledge about drinking water contamination in locations where no public monitoring of trace metals is in place.
Resumo:
In this study is presented an economic optimization method to design telescope irrigation laterals (multidiameter) with regular spaced outlets. The proposed analytical hydraulic solution was validated by means of a pipeline composed of three different diameters. The minimum acquisition cost of the telescope pipeline was determined by an ideal arrangement of lengths and respective diameters for each one of the three segments. The mathematical optimization method based on the Lagrange multipliers provides a strategy for finding the maximum or minimum of a function subject to certain constraints. In this case, the objective function describes the acquisition cost of pipes, and the constraints are determined from hydraulic parameters as length of irrigation laterals and total head loss permitted. The developed analytical solution provides the ideal combination of each pipe segment length and respective diameter, resulting in a decreased of the acquisition cost.
Resumo:
Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae) is considered to be the main pest of maize crops in Brazil. Entomopathogenic nematodes (EPN) may be used to control this pest and exhibit different, unique abilities to search for their hosts. The movement of EPN in relation to S. frugiperda was evaluated. To test for horizontal movement, a styrofoam enclosure filled with sand was divided into segments, nematodes were placed at the entrance to the enclosure and a larva was placed at the end of each division. The same approach was used to evaluate vertical movement; however, PVC pipes were used in this case. In general, the mortality was inversely proportional to the initial distance between host and nematodes. In the vertical displacement test, both nematodes were able to kill the larvae up to a distance of 25 cm. Therefore, the infective juveniles of H. amazonensis and S. arenarium can search out, infect and kill larvae of S. frugiperda at distances of up to 60 cm and 25 cm of horizontal and vertical displacement, respectively.
Resumo:
A irrigação por gotejamento subsuperficial, que utiliza um sistema protetor do emissor para evitar entupimento do mesmo por raiz e partículas sólida do solo, pode ser viável em relação a um sistema convencional. Propôs-se, com este trabalho, avaliar o desempenho de um sistema para proteção de emissor e comparar os resultados com um sistema que utiliza emissor convencional para irrigação por gotejamento subsuperficial. O sistema com protetor foi construído com materiais de baixo custo: mangueira de polietileno, microtubo, conector e um gotejador para controlar a vazão e no sistema convencional utilizou-se um emissor comercial. Após 12 meses de avaliação o sistema com protetor demonstrou bom desempenho com vazão relativa média de 0,97 e 0,98 em vasos com e sem cultura, respectivamente, não apresentando problemas de entupimento e tendo menor custo. No sistema convencional constatou-se vazão relativa de 0,51 e 0,98 em vasos com e sem cultura, respectivamente, grau de entupimento por raiz de 49,22% e emissores com solo em seu interior. Desta forma, o uso do emissor com sistema de proteção indicou viabilidade para irrigação subsuperficial por gotejamento, nas condições desta pesquisa.
Resumo:
This paper quantifies the effects of milling conditions on surface integrity of ultrafine-grained steels. Cutting speed, feed rate and depth of cut were related to microhardness and microstructure of the workpiece beneath machined surface. Low-carbon alloyed steel with 10.8 µm (as-received) and 1.7 µm (ultrafine) grain sizes were end milled using the down-milling and dry condition in a CNC machining center. The results show ultrafine-grained workpiece preserves its surface integrity against cutting parameters more than the as-received material. Cutting speed increases the microhardness while depth of cut deepens the hardened layer of the as-received material. Also, deformations of microstructure following feed rate direction were observed in workpiece subsurface.
Resumo:
This work presents an investigation of the ductile tearing properties for a girth weld made of an API 5L X80 pipeline steel using experimentally measured crack growth resistance curves. Use of these materials is motivated by the increasing demand in the number of applications for manufacturing high strength pipes for the oil and gas industry including marine applications and steel catenary risers. Testing of the pipeline girth welds employed side-grooved, clamped SE(T) specimens and shallow crack bend SE(B) specimens with a weld centerline notch to determine the crack growth resistance curves based upon the unloading compliance (UC) method using the single specimen technique. Recently developed compliance functions and η-factors applicable for SE(T) and SE(B) fracture specimens with homogeneous material and overmatched welds are introduced to determine crack growth resistance data from laboratory measurements of load-displacement records.
Resumo:
The purpose of this study is to evaluate the influence of the cutting parameters of high-speed machining milling on the characteristics of the surface integrity of hardened AISI H13 steel. High-speed machining has been used intensively in the mold and dies industry. The cutting parameters used as input variables were cutting speed (v c), depth of cut (a p), working engagement (a e) and feed per tooth (f z ), while the output variables were three-dimensional (3D) workpiece roughness parameters, surface and cross section microhardness, residual stress and white layer thickness. The subsurface layers were examined by scanning electron and optical microscopy. Cross section hardness was measured with an instrumented microhardness tester. Residual stress was measured by the X-ray diffraction method. From a statistical standpoint (the main effects of the input parameters were evaluated by analysis of variance), working engagement (a e) was the cutting parameter that exerted the strongest effect on most of the 3D roughness parameters. Feed per tooth (f z ) was the most important cutting parameter in cavity formation. Cutting speed (v c) and depth of cut (a p) did not significantly affect the 3D roughness parameters. Cutting speed showed the strongest influence on residual stress, while depth of cut exerted the strongest effect on the formation of white layer and on the increase in surface hardness.
Resumo:
A low content of organic matter, which is largely refractory in nature, is characteristic of most sediments, meaning that aquatic deposit-feeders live on a very poor food source. The food is derived mainly from sedimenting phytodetritus, and in temperate waters like the Baltic Sea, from seasonal phytoplankton blooms. Deposit-feeders are either bulk-feeders, or selective feeders, which preferentially ingest the more organic-rich particles in the sediment, including phytodetritus, microbes and meiofauna. The soft-bottom benthos of the Baltic Sea has low species biodiversity and is dominated by a few macrobenthic species, among which the most numerous are the two deposit-feeding amphipods Monoporeia affinis and Pontoporeia femorata, and the bivalve Macoma balthica. This thesis is based on laboratory experiments on the feeding of these three species, and on the priapulid Halicryptus spinulosus. Feeding by benthic animals is often difficult to observe, but can be effectively studied by the use of tracers. Here we used the radioactive isotope 14C to label food items and to trace the organic matter uptake in the animals, while the stable isotopes 13C and 15N were used to follow feeding on aged organic matter in the sediment. The abundance of M. balthica and the amphipods tends to be negatively correlated, i.e., fewer bivalves are found at sites with dense populations of amphipods, with the known explanation that newly settled M. balthica spat are killed by the amphipods. Whether the postlarvae are just accidentally killed, or also ingested after being killed was tested by labelling the postlarvae with 14C and Rhodamine B. Both tracer techniques gave similar evidence for predation on and ingestion of postlarval bivalves. We calculated that this predation was likely to supply less than one percent of the daily carbon requirement for M. affinis, but might nevertheless be an important factor limiting recruitment of M. balthica. The two amphipods M. affinis and P. femorata are partly vertically segregated in the sediment, but whether they also feed at different depths was unknown. By adding fresh 14C-labelled algae either on the sediment surface or mixed into the sediment, we were able to distinguish surface from subsurface feeding. We found M. affinis and P. femorata to be surface and subsurface deposit-feeders, respectively. Whether the amphipods also feed on old organic matter, was studied by adding fresh 14C-labelled algae on the sediment surface, and using aged, one-year-old 13C- and 15N-labelled sediment as deep sediment. Ingestion of old organic matter, traced by the stable isotopes, differed between the two species, with a higher uptake for P. femorata, suggesting that P. femorata utilises the older, deeper-buried organic matter to a greater extent. Feeding studies with juveniles of both M. affinis and P. femorata had not been done previously. In an experiment with the same procedure and treatments as for the adults, juveniles of both amphipod species were found to have similar feeding strategies. They fed on both fresh and old sediment, with no partitioning of food resources, making them likely to be competitors for the same food resource. Oxygen deficiency has become more wide-spread in the Baltic Sea proper in the last half-century, and upwards of 70 000km2 are now devoid of macrofauna, even though part of that area does not have oxygen concentrations low enough to directly kill the macrofauna. We made week-long experiments on the rate of feeding on 14C-labelled diatoms spread on the sediment surface in different oxygen concentrations for both the amphipod species, M. balthica and H. spinulosus. The amphipods were the most sensitive to oxygen deficiency and showed reduced feeding and lower survival at low oxygen concentrations. M. balthica showed reduced feeding at the lowest oxygen concentration, but no mortality increase. The survival of H. spinulosus was unaffected, but it did not feed, showing that it is not a surface deposit-feeder. We conclude that low oxygen concentrations that are not directly lethal, but reduce food intake, may lead to starvation and death in the longer term.
Resumo:
[EN] The Humboldt-09 cruise covered a narrow meridional band along the Chilean continental slope (44?23º S). Here we use physical and biochemical data from a long meridional section (4000 km) and three short zonal sections (100 km) to describe the distribution of the different water masses found in this region. Six water masses were identified: Subantarctic Water (SAAW), Summer Subantarctic Water (SSAW), Subtropical Water (STW), Equatorial Subsurface Water (ESSW), Antarctic Intermediate Water (AAIW), and Pacific Deep Water (PDW). For the first time, a novel set of source water mass properties (or water types) is introduced for SSAW, and nutrient and dissolved oxygen water types are proposed for all the water masses. Optimum multiparameter (OMP) analysis was used through an iterative process to obtain a sound definition of the water types that minimizes the residuals of the method. Both the classic OMP and the quasi-extended OMP models reproduced the data rather well. Finally, the spatial distribution of the different water masses was calculated with the quasi-extended OMP, which is not influenced by the respiration of organic matter. The distribution of the different water masses is presented over the meridional and zonal transects and in property-property diagrams. A smooth meridional transition from subantarctic to tropical and equatorial water masses is observed in this area. This transition takes place in surface, central, and intermediate waters over distances of the order of 1000 km. The meridional transition contrasts with the abrupt zonal changes found in the cross-slope direction, which are of comparable magnitude but over distances of the order of 100 km. Both AAIW and SAAW (fresh and well oxygenated) partially mix with the hypoxic ESSW and, therefore, play an important role in the ventilation of the southern part of the oxygen minimum zone.