979 resultados para strain levels
Resumo:
The role of peroxisome proliferator activator receptor (PPAR)β/δ in the pathogenesis of Alzheimer's disease has only recently been explored through the use of PPARβ/δ agonists. Here we evaluated the effects of PPARβ/δ deficiency on the amyloidogenic pathway and tau hyperphosphorylation. PPARβ/δ-null mice showed cognitive impairment in the object recognition task, accompanied by enhanced DNA-binding activity of NF-κB in the cortex and increased expression of IL-6. In addition, two NF-κB-target genes involved in β-amyloid (Aβ) synthesis and deposition, the β site APP cleaving enzyme 1 (Bace1) and the receptor for advanced glycation endproducts (Rage), respectively, increased in PPARβ/δ-null mice compared to wild type animals. The protein levels of glial fibrillary acidic protein (GFAP) increased in the cortex of PPARβ/δ-null mice, which would suggest the presence of astrogliosis. Finally, tau hyperphosphorylation at Ser199 and enhanced levels of PHF-tau were associated with increased levels of the tau kinases CDK5 and phospho-ERK1/2 in the cortex of PPARβ/δ(-/-) mice. Collectively, our findings indicate that PPARβ/δ deficiency results in cognitive impairment associated with enhanced inflammation, astrogliosis and tau hyperphosphorylation in the cortex.
Resumo:
Dengue virus (DENV) infections represent a significant concern for public health worldwide, being considered as the most prevalent arthropod-borne virus regarding the number of reported cases. In this study, we report the complete genome sequencing of a DENV serotype 4 isolate, genotype II, obtained in the city of Manaus, directly from the serum sample, applying Ion Torrent sequencing technology. The use of a massive sequencing technology allowed the detection of two variable sites, one in the coding region for the viral envelope protein and the other in the nonstructural 1 coding region within viral populations.
Resumo:
OBJECTIVE Serum levels of soluble TNF-like weak inducer of apoptosis (sTWEAK) and its scavenger receptor CD163 (sCD163) have been linked to insulin resistance. We analysed the usefulness of these cytokines as biomarkers of type 2 diabetes in a Spanish cohort, together with their relationship to food consumption in the setting of the Di@bet.es study. RESEARCH DESIGN AND METHODS This is a cross-sectional, matched case-control study of 514 type 2 diabetes subjects and 517 controls with a Normal Oral Glucose Tolerance Test (NOGTT), using data from the Di@bet.es study. Study variables included clinical and demographic structured survey, food frequency questionnaire and physical examination. Serum concentrations of sTWEAK and sCD163 were measured by ELISA. Linear regression analysis determined which variables were related to sTWEAK and sCD163 levels. Logistic regression analysis was used to estimate odd ratios of presenting type 2 diabetes. RESULTS sCD163 concentrations and sCD163/sTWEAK ratio were 11.0% and 15.0% higher, respectively, (P<0.001) in type 2 diabetes than in controls. Following adjustment for various confounders, the OR for presenting type 2 diabetes in subjects in the highest vs the lowest tertile of sCD163 was [(OR), 2,01 (95%CI, 1,46-2,97); P for trend <0.001]. Coffee and red wine consumption was negatively associated with serum levels of sCD163 (P = 0.0001 and; P = 0.002 for coffee and red wine intake, respectively). CONCLUSIONS High circulating levels of sCD163 are associated with type 2 diabetes in the Spanish population. The association between coffee and red wine intake and these biomarkers deserves further study to confirm its potential role in type 2 diabetes.
Resumo:
BACKGROUND In 1997, 18.5% of the cases of Meningococcal Disease caused b serogroup C in Andalusia were children between 2 and 4 years of age; ages where the initial immune response and the duration of the capsular A + C meningococcal polysaccharide vaccine is less than in older age groups. Research was designed in order to measure the immune response produced by this vaccine in children from 2 to 6 years of age and to compare it with the natural immunity present in unvaccinated children. METHODS I. Dual monitoring study: a) groups of children vaccinated previously and control groups, b) groups of children who were going to be vaccinated, for pre and post-vaccination (1, 6 and 12 months) analysis and a control group. II. The bactericidal activity was measured according to the standardised protocol of the CDC with regard to the strain of N. meningitidis C-11. The sera with bactericidal activity (TAB) > 1:8 were considered to be protective. RESULTS 1 and 2 months following vaccination, the proportion of TAB > 1:8 was significantly higher than that of the control group (65.6% and 73% in comparison to 2.2% and 12%). In the pre-vaccine and post-vaccine (after 6, 7, 12 and 13 months) verification, no significant difference between vaccinated individuals and controls was observed. CONCLUSIONS The differences between vaccinated and unvaccinated individuals 1 and 2 months following vaccination indicate seroconversion in the vaccinated individuals. For the age group of between 2 to 6 years of age, the bactericidal activity acquired decline quickly, as, after 6 months, differences between this group and the control group are no longer observed.
Resumo:
Acinetobacter baumannii, a strictly aerobic, non-fermentative, Gram-negative coccobacillary rod-shaped bacterium, is an opportunistic pathogen in humans. We recently isolated a multidrug-resistant A. baumannii strain KBN10P02143 from the pus sample drawn from a surgical patient in South Korea. We report the complete genome of this strain, which consists of 4,139,396 bp (G + C content, 39.08%) with 3,868 protein-coding genes, 73 tRNAs and six rRNA operons. Identification of the genes related to multidrug resistance from this genome and the discovery of a novel conjugative plasmid will increase our understanding of the pathogenicity associated with this species.
Resumo:
Dengue is an acute febrile disease caused by the mosquito-borne dengue virus (DENV) that according to clinical manifestations can be classified as asymptomatic, mild or severe dengue. Severe dengue cases have been associated with an unbalanced immune response characterised by an over secretion of inflammatory cytokines. In the present study we measured type I interferon (IFN-I) transcript and circulating levels in primary and secondary DENV infected patients. We observed that dengue fever (DF) and dengue haemorrhagic fever (DHF) patients express IFN-I differently. While DF and DHF patients express interferon-α similarly (52,71 ± 7,40 and 49,05 ± 7,70, respectively), IFN- β were associated with primary DHF patients. On the other hand, secondary DHF patients were not able to secrete large amounts of IFN- β which in turn may have influenced the high-level of viraemia. Our results suggest that, in patients from our cohort, infection by DENV serotype 3 elicits an innate response characterised by higher levels of IFN- β in the DHF patients with primary infection, which could contribute to control infection evidenced by the low-level of viraemia in these patients. The present findings may contribute to shed light in the role of innate immune response in dengue pathogenesis.
Resumo:
In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by (1)H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent.
Resumo:
The fitness and virulence costs associated with the clinical acquisition of colistin resistance by Acinetobacter baumannii were evaluated. The growth of strain CR17 (colistin resistant) was less than that of strain CS01 (colistin susceptible) when the strains were grown in competition (72-h competition index, 0.008). In a murine sepsis model, CS01 and CR17 reached spleen concentrations when coinfecting of 9.31 and 6.97 log10 CFU/g, respectively, with an in vivo competition index of 0.016. Moreover, CS01 was more virulent than CR17 with respect to mortality and time to death.
Resumo:
Among biocontrol agents that are able to suppress root diseases caused by fungal pathogens, root-colonizing fluorescent pseudomonads have received particular attention because many strains of these bacteria trigger systemic resistance in host plants and produce antifungal compounds and exoenzymes. In general, the expression of these plant-beneficial traits is regulated by autoinduction mechanisms and may occur on roots when the pseudomonads form microcolonies. Three major classes of antibiotic compounds reviewed here in detail (2,4-diacetylphloroglucinol, pyoluteorin and various phenazine compounds) are all produced under cell population density-dependent autoinduction control acting at transcriptional and post-transcriptional levels. This regulation can either be reinforced or attenuated by a variety of chemical signals emanating from the pseudomonads themselves, other microorganisms or root exudates. Signals stimulating biocontrol factor expression via the Gac/Rsm signal transduction pathway in the biocontrol strain Pseudomonas fluorescens CHA0 are synthesized by many different plant-associated bacteria, warranting a more detailed investigation in the future.
Resumo:
MOTIVATION: Lateral gene transfer is a major mechanism contributing to bacterial genome dynamics and pathovar emergence via pathogenicity island (PAI) spreading. However, since few of these genomic exchanges are experimentally reproducible, it is difficult to establish evolutionary scenarios for the successive PAI transmissions between bacterial genera. Methods initially developed at the gene and/or nucleotide level for genomics, i.e. comparisons of concatenated sequences, ortholog frequency, gene order or dinucleotide usage, were combined and applied here to homologous PAIs: we call this approach comparative PAI genometrics. RESULTS: YAPI, a Yersinia PAI, and related islands were compared with measure evolutionary relationships between related modules. Through use of our genometric approach designed for tracking codon usage adaptation and gene phylogeny, an ancient inter-genus PAI transfer was oriented for the first time by characterizing the genomic environment in which the ancestral island emerged and its subsequent transfers to other bacterial genera.
Resumo:
Pseudomonas fluorescens strain CHA0 protects plants from various root diseases. Antibiotic metabolites synthesized by this strain play an important role in disease suppression; their production is mediated by the global activator gene gacA. Here we show by complementation that the gacA gene is also essential for the expression of two extracellular enzymes in P. fluorescens CHA0: phospholipase C and a 47-kDa metalloprotease. In contrast, the production of another exoenzyme, lipase, is not regulated by the gacA gene. Protease, phospholipase and antibiotics of P. fluorescens are all known to be optimally produced at the end of exponential growth; thus, the gacA gene appears to be a general stationary-phase regulator.
Resumo:
Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5 × 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.