937 resultados para srs-1 gene mapping


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Inhibitor of differentiation 1 (ID1) plays a role in cellular differentiation, proliferation, angiogenesis and tumor invasion. As shown recently, ID1 is positively regulated by the tyrosine kinase SRC in lung carcinoma cell lines and with that appears as a potential new therapeutic target in non-small cell carcinoma (NSCLC). To substantiate this hypothesis we examined ID1, SRC and matrix metalloproteinase-9 (MMP-9) immunohistochemically in human NSCLC specimens.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The role of N-myc downstream regulated gene-1 (NDRG1) in cancer has recently gained interest, as potential regulator of cell death and tumor suppressor. Although its normal function in the pancreas is largely unknown, loss of NDRG1 expression is associated with a more aggressive tumor phenotype and poor outcome in pancreatic cancer patients.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

N-myc downstream-regulated gene 1 (NDRG1), important in tumor growth and metastasis, has recently gained interest as a potential therapeutic target. Loss of NDRG1 expression is generally associated with poor clinical outcome in pancreatic cancer (PaCa) patients. As the NDRG1 gene possesses a large promoter CpG island, we sought to determine whether its repression is epigenetically mediated in PaCa cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To characterize the zonal distribution of three-dimensional (3D) T1 mapping in the hip joint of asymptomatic adult volunteers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Tyrolean Grey cattle represent a local breed with a population size of approximately 5000 registered cows. In 2003, a previously unknown neurological disorder was recognized in Tyrolean Grey cattle. The clinical signs of the disorder are similar to those of bovine progressive degenerative myeloencephalopathy (weaver syndrome) in Brown Swiss cattle but occur much earlier in life. The neuropathological investigation of an affected calf showed axonal degeneration in the central nervous system (CNS) and femoral nerve. The pedigrees of the affected calves suggested a monogenic autosomal recessive inheritance. We localized the responsible mutation to a 1.9 Mb interval on chromosome 16 by genome-wide association and haplotype mapping. The MFN2 gene located in this interval encodes mitofusin 2, a mitochondrial membrane protein. A heritable human axonal neuropathy, Charcot-Marie-Tooth disease-2A2 (CMT2A2), is caused by MFN2 mutations. Therefore, we considered MFN2 a positional and functional candidate gene and performed mutation analysis in affected and control Tyrolean Grey cattle. We did not find any non-synonymous variants. However, we identified a perfectly associated silent SNP in the coding region of exon 20 of the MFN2 gene. This SNP is located within a putative exonic splice enhancer (ESE) and the variant allele leads to partial retention of the entire intron 19 and a premature stop codon in the aberrant MFN2 transcript. Thus we have identified a highly unusual splicing defect, where an exonic single base exchange leads to the retention of the preceding intron. This splicing defect represents a potential explanation for the observed degenerative axonopathy. Marker assisted selection can now be used to eliminate degenerative axonopathy from Tyrolean Grey cattle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microphthalmia in sheep is an autosomal recessive inherited congenital anomaly found within the Texel breed. It is characterized by extremely small or absent eyes and affected lambs are absolutely blind. For the first time, we use a genome-wide ovine SNP array for positional cloning of a Mendelian trait in sheep. Genotyping 23 cases and 23 controls using Illumina's OvineSNP50 BeadChip allowed us to localize the causative mutation for microphthalmia to a 2.4 Mb interval on sheep chromosome 22 by association and homozygosity mapping. The PITX3 gene is located within this interval and encodes a homeodomain-containing transcription factor involved in vertebrate lens formation. An abnormal development of the lens vesicle was shown to be the primary event in ovine microphthalmia. Therefore, we considered PITX3 a positional and functional candidate gene. An ovine BAC clone was sequenced, and after full-length cDNA cloning the PITX3 gene was annotated. Here we show that the ovine microphthalmia phenotype is perfectly associated with a missense mutation (c.338G>C, p.R113P) in the evolutionary conserved homeodomain of PITX3. Selection against this candidate causative mutation can now be used to eliminate microphthalmia from Texel sheep in production systems. Furthermore, the identification of a naturally occurring PITX3 mutation offers the opportunity to use the Texel as a genetically characterized large animal model for human microphthalmia.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The tumor suppressor gene hypermethylated in cancer 1 (HIC1), located on human chromosome 17p13.3, is frequently silenced in cancer by epigenetic mechanisms. Hypermethylated in cancer 1 belongs to the bric à brac/poxviruses and zinc-finger family of transcription factors and acts by repressing target gene expression. It has been shown that enforced p53 expression leads to increased HIC1 mRNA, and recent data suggest that p53 and Hic1 cooperate in tumorigenesis. In order to elucidate the regulation of HIC1 expression, we have analysed the HIC1 promoter region for p53-dependent induction of gene expression. Using progressively truncated luciferase reporter gene constructs, we have identified a p53-responsive element (PRE) 500 bp upstream of the TATA-box containing promoter P0 of HIC1, which is sequence specifically bound by p53 in vitro as assessed by electrophoretic mobility shift assays. We demonstrate that this HIC1 p53-responsive element (HIC1.PRE) is necessary and sufficient to mediate induction of transcription by p53. This result is supported by the observation that abolishing endogenous wild-type p53 function prevents HIC1 mRNA induction in response to UV-induced DNA damage. Other members of the p53 family, notably TAp73beta and DeltaNp63alpha, can also act through this HIC1.PRE to induce transcription of HIC1, and finally, hypermethylation of the HIC1 promoter attenuates inducibility by p53.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Seladin-1 (SELective Alzheimer's Disease INdicator-1) is an anti-apoptotic gene, which is down-regulated in brain regions affected by Alzheimer's disease (AD). In addition, seladin-1 catalyzes the conversion of desmosterol into cholesterol. Disruption of cholesterol homeostasis in neurons may increase cell susceptibility to toxic agents. Because the hippocampus and the subventricular zone, which are affected in AD, are the unique regions containing stem cells with neurogenic potential in the adult brain, it might be hypothesized that this multipotent cell compartment is the predominant source of seladin-1 in normal brain. In the present study, we isolated and characterized human mesenchymal stem cells (hMSC) as a model of cells with the ability to differentiate into neurons. hMSC were then differentiated toward a neuronal phenotype (hMSC-n). These cells were thoroughly characterized and proved to be neurons, as assessed by molecular and electrophysiological evaluation. Seladin-1 expression was determined and found to be significantly reduced in hMSC-n compared to undifferentiated cells. Accordingly, the total content of cholesterol was decreased after differentiation. These original results demonstrate for the first time that seladin-1 is abundantly expressed by stem cells and appear to suggest that reduced expression in AD might be due to an altered pool of multipotent cells.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: The cysteine-rich/spacer domains of ADAMTS13 contain a major binding site for antibodies in patients with acquired thrombotic thrombocytopenic purpura (TTP). OBJECTIVE: To study the heterogeneity of the antibody response towards these domains an immunoglobulin V-gene phage-display library was constructed to isolate monoclonal anti-ADAMTS13 antibodies from the immunoglobulin repertoire of a patient with acquired TTP. METHODS: Combined variable heavy chain (VH) and variable light chain (VL) segments, expressed as single-chain Fv fragments (scFv), were selected for binding to an ADAMTS13 fragment consisting of the disintegrin/thrombospondin type-1 repeat 1 (TSP1)/cysteine-rich/spacer domains. RESULTS: Seven different scFv antibody clones were identified that were assigned to four groups based on their homology to VH germline gene segments. Epitope-mapping revealed that scFv I-9 (VH1-69), I-26 (VH1-02), and I-41 (VH3-09) bind to an overlapping binding site in the ADAMTS13 spacer domain, whereas scFv I-16 (VH3-07) binds to the disintegrin/TSP1 domains. The affinity of scFv for the disintegrin/TSP1/cysteine-rich/spacer domain was determined by surface plasmon resonance analysis and the dissociation constants ranged from 3 to 254 nM. The scFv partially inhibited ADAMTS13 activity. However, full-length IgG prepared from the variable domains of scFv I-9 inhibited ADAMTS13 activity more profoundly. Plasma of six patients with acquired TTP competed for binding of scFv I-9 to ADAMTS13. CONCLUSION: Our data indicate that multiple B-cell clones producing antibodies directed against the spacer domain are present in the patient analyzed in this study. Our findings also suggest that antibodies with a similar epitope specificity as scFv I-9 are present in plasma of other patients with acquired TTP.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coat color dilution in several breeds of dog is characterized by a specific pigmentation phenotype and sometimes accompanied by hair loss and recurrent skin inflammation, the so-called color dilution alopecia or black hair follicular dysplasia. Coat color dilution (d) is inherited as a Mendelian autosomal recessive trait. In a previous study, MLPH polymorphisms showed perfect cosegregation with the dilute phenotype within breeds. However, different dilute haplotypes were found in different breeds, and no single polymorphism was identified in the coding sequence that was likely to be causative for the dilute phenotype. We resequenced the 5'-region of the canine MLPH gene and identified a strong candidate single nucleotide polymorphism within the nontranslated exon 1, which showed perfect association to the dilute phenotype in 65 dilute dogs from 7 different breeds. The A/G polymorphism is located at the last nucleotide of exon 1 and the mutant A-allele is predicted to reduce splicing efficiency 8-fold. An MLPH mRNA expression study using quantitative reverse transcriptase-polymerase chain reaction confirmed that dd animals had only about approximately 25% of the MLPH transcript compared with DD animals. These results provide preliminary evidence that the reported regulatory MLPH mutation might represent a causal mutation for coat color dilution in dogs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Overexpression of the transcription factor E2F-1 induces apoptosis in tumor cells. This apoptotic effect is partly mediated through the induction of the double-stranded RNA-activated protein kinase (PKR). Here, we investigate if agents that upregulate PKR could enhance the apoptotic effect of E2F-1 overexpression in liver tumors. In human hepatocellular carcinoma (HCC) cells (Hep3B, HepG2, Huh7), adenovirus-mediated overexpression of E2F-1 (AdCMV-E2F) transcriptionally increased PKR mRNA. The subsequent increase of total and phosphorylated PKR protein was followed by induction of apoptosis. When AdCMV-E2F was combined with the PKR modifier interferon alpha (IFNalpha), PKR was additionally upregulated and both PKR activation and apoptosis were increased. Subcutaneous xenograft tumors were selectively targeted using an adenoviral vector expressing E2F-1 under the control of the human telomerase reverse transcriptase (hTERT) promoter (AdhTERT-E2F). Weekly systemic administration of AdhTERT-E2F inhibited tumor growth. The tumor suppressive effect of AdhTERT-E2F therapy was further enhanced in combination with IFNalpha.Our results demonstrate that PKR activating agents enhance the anti-tumor effect of E2F-1 overexpression in HCC in-vitro and in-vivo. Hence, modulation of PKR is a potential strategy to increase the efficacy of PKR-dependent anti-tumor therapies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The expression of adenosine A2a receptors (A2aR) in the mammalian striatum is well known. In contrast the exact distribution of A2aR in other regions of the central nervous system remains unclear. The aim of this study was to investigate the A2aR gene expression in the rat olfactory bulb and spinal cord, two regions which are seldom included in mapping studies. Secondly, we compared the A2aR expression in the rat and in the mouse brain. Hybridization histochemistry was performed with an S35-labelled radioactive oligonucleotide probe. The results show strong expression of A2aR in the mouse and rat striatum in accordance with previous reports. In the olfactory bulb a weak but specific expression of A2aR was found in the granular cell layer in both species. In contrast, no significant expression of the A2aR gene was observed in other parts of the brain or the rat spinal cord. The presence of the A2aR in the mammalian olfactory bulb suggests a functional role for this receptor in olfaction.