936 resultados para special linear system


Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews developments in our understanding of the state of the Antarctic and Southern Ocean climate and its relation to the global climate system over the last few millennia. Climate over this and earlier periods has not been stable, as evidenced by the occurrence of abrupt changes in atmospheric circulation and temperature recorded in Antarctic ice core proxies for past climate. Two of the most prominent abrupt climate change events are characterized by intensification of the circumpolar westerlies (also known as the Southern Annular Mode) between similar to 6000 and 5000 years ago and since 1200-1000 years ago. Following the last of these is a period of major trans-Antarctic reorganization of atmospheric circulation and temperature between A. D. 1700 and 1850. The two earlier Antarctic abrupt climate change events appear linked to but predate by several centuries even more abrupt climate change in the North Atlantic, and the end of the more recent event is coincident with reorganization of atmospheric circulation in the North Pacific. Improved understanding of such events and of the associations between abrupt climate change events recorded in both hemispheres is critical to predicting the impact and timing of future abrupt climate change events potentially forced by anthropogenic changes in greenhouse gases and aerosols. Special attention is given to the climate of the past 200 years, which was recorded by a network of recently available shallow firn cores, and to that of the past 50 years, which was monitored by the continuous instrumental record. Significant regional climate changes have taken place in the Antarctic during the past 50 years. Atmospheric temperatures have increased markedly over the Antarctic Peninsula, linked to nearby ocean warming and intensification of the circumpolar westerlies. Glaciers are retreating on the peninsula, in Patagonia, on the sub-Antarctic islands, and in West Antarctica adjacent to the peninsula. The penetration of marine air masses has become more pronounced over parts of West Antarctica. Above the surface, the Antarctic troposphere has warmed during winter while the stratosphere has cooled year-round. The upper kilometer of the circumpolar Southern Ocean has warmed, Antarctic Bottom Water across a wide sector off East Antarctica has freshened, and the densest bottom water in the Weddell Sea has warmed. In contrast to these regional climate changes, over most of Antarctica, near-surface temperature and snowfall have not increased significantly during at least the past 50 years, and proxy data suggest that the atmospheric circulation over the interior has remained in a similar state for at least the past 200 years. Furthermore, the total sea ice cover around Antarctica has exhibited no significant overall change since reliable satellite monitoring began in the late 1970s, despite large but compensating regional changes. The inhomogeneity of Antarctic climate in space and time implies that recent Antarctic climate changes are due on the one hand to a combination of strong multidecadal variability and anthropogenic effects and, as demonstrated by the paleoclimate record, on the other hand to multidecadal to millennial scale and longer natural variability forced through changes in orbital insolation, greenhouse gases, solar variability, ice dynamics, and aerosols. Model projections suggest that over the 21st century the Antarctic interior will warm by 3.4 degrees +/- 1 degrees C, and sea ice extent will decrease by similar to 30%. Ice sheet models are not yet adequate enough to answer pressing questins about the effect of projected warming on mass balance and sea level. Considering the potentially major impacts of a warming climate on Antarctica, vigorous efforts are needed to better understand all aspects of the highly coupled Antarctic climate system as well as its influence on the Earth's climate and oceans.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer vision-based food recognition could be used to estimate a meal's carbohydrate content for diabetic patients. This study proposes a methodology for automatic food recognition, based on the Bag of Features (BoF) model. An extensive technical investigation was conducted for the identification and optimization of the best performing components involved in the BoF architecture, as well as the estimation of the corresponding parameters. For the design and evaluation of the prototype system, a visual dataset with nearly 5,000 food images was created and organized into 11 classes. The optimized system computes dense local features, using the scale-invariant feature transform on the HSV color space, builds a visual dictionary of 10,000 visual words by using the hierarchical k-means clustering and finally classifies the food images with a linear support vector machine classifier. The system achieved classification accuracy of the order of 78%, thus proving the feasibility of the proposed approach in a very challenging image dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within the context of exoplanetary atmospheres, we present a comprehensive linear analysis of forced, damped, magnetized shallow water systems, exploring the effects of dimensionality, geometry (Cartesian, pseudo-spherical, and spherical), rotation, magnetic tension, and hydrodynamic and magnetic sources of friction. Across a broad range of conditions, we find that the key governing equation for atmospheres and quantum harmonic oscillators are identical, even when forcing (stellar irradiation), sources of friction (molecular viscosity, Rayleigh drag, and magnetic drag), and magnetic tension are included. The global atmospheric structure is largely controlled by a single key parameter that involves the Rossby and Prandtl numbers. This near-universality breaks down when either molecular viscosity or magnetic drag acts non-uniformly across latitude or a poloidal magnetic field is present, suggesting that these effects will introduce qualitative changes to the familiar chevron-shaped feature witnessed in simulations of atmospheric circulation. We also find that hydrodynamic and magnetic sources of friction have dissimilar phase signatures and affect the flow in fundamentally different ways, implying that using Rayleigh drag to mimic magnetic drag is inaccurate. We exhaustively lay down the theoretical formalism (dispersion relations, governing equations, and time-dependent wave solutions) for a broad suite of models. In all situations, we derive the steady state of an atmosphere, which is relevant to interpreting infrared phase and eclipse maps of exoplanetary atmospheres. We elucidate a pinching effect that confines the atmospheric structure to be near the equator. Our suite of analytical models may be used to develop decisively physical intuition and as a reference point for three-dimensional magnetohydrodynamic simulations of atmospheric circulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To investigate erosive tooth wear and related variables among adolescents and adults in Israel, utilizing the new basic erosive wear examination (BEWE) scoring system, in an attempt to contribute to the ongoing review, evaluation, and further development of an international standardized index. MATERIAL AND METHODS A cross-sectional, descriptive, and analytic survey was conducted among 500 subjects of five age groups. Dental erosion was measured according to the new BEWE scoring system. Independent variables included gender, age, origin, education, employment status, and diet. A backward stepwise linear regression model was applied to identify significantly associated variables. RESULTS Fifty percent of the survey subjects demonstrated erosive tooth wear; among them, 10 % had distinct erosion of over 50 % of the dental surface. Total BEWE score differences by age groups were statistically significant; as the age increased, the mean total BEWE scores increased (p < 0.001). The association between acidic foods and erosion was evident among the younger population (p = 0.038). In a multiple regression model, age (p < 0.001) and diet (p = 0.044) achieved statistical significance as variables associated with dental erosive wear. CONCLUSIONS Our study is one of the first to use the BEWE scoring system in an epidemiological survey among adolescents and adults. It was found that the BEWE index is straightforward, easy to conduct, and comfortably accepted by the examinees. CLINICAL RELEVANCE The present findings, together with further international research, should contribute toward continued evaluation of the BEWE system as an international standard and thereby, toward more optimal understanding, evidence-based treatment, and prevention of dental erosive wear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Time-based indoor localization has been investigated for several years but the accuracy of existing solutions is limited by several factors, e.g., imperfect synchronization, signal bandwidth and indoor environment. In this paper, we compare two time-based localization algorithms for narrow-band signals, i.e., multilateration and fingerprinting. First, we develop a new Linear Least Square (LLS) algorithm for Differential Time Difference Of Arrival (DTDOA). Second, fingerprinting is among the most successful approaches used for indoor localization and typically relies on the collection of measurements on signal strength over the area of interest. We propose an alternative by constructing fingerprints of fine-grained time information of the radio signal. We offer comprehensive analytical discussions on the feasibility of the approaches, which are backed up by evaluations in a software defined radio based IEEE 802.15.4 testbed. Our work contributes to research on localization with narrow-band signals. The results show that our proposed DTDOA-based LLS algorithm obviously improves the localization accuracy compared to traditional TDOA-based LLS algorithm but the accuracy is still limited because of the complex indoor environment. Furthermore, we show that time-based fingerprinting is a promising alternative to power-based fingerprinting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The challenge for sustainable organic dairy farming is identification of cows that are well adapted to forage-based production systems. Therefore, the aim of this study was to compare the grazing behaviour, physical activity and metabolic profile of two different Holstein strains kept in an organic grazing system without concentrate supplementation. Twelve Swiss (HCH ; 566 kg body weight (BW) and 12 New Zealand Holstein-Friesian (HNZ ; 530 kg BW) cows in mid-lactation were kept in a rotational grazing system. After an adaptation period, the milk yield, nutrient intake, physical activity and grazing behaviour were recorded for each cow for 7 days. On three consecutive days, blood was sampled at 07:00, 12:00 and 17:00 h from each cow by jugular vein puncture. Data were analysed using linear mixed models. No differences were found in milk yield, but milk fat (3.69 vs. 4.05%, P = 0.05) and milk protein percentage (2.92 vs. 3.20%, P < 0.01) were lower in HCH than in HNZ cows. Herbage intake did not differ between strains, but organic matter digestibility was greater (P = 0.01) in HCH compared to HNZ cows. The HCH cows spent less (P = 0.04) time ruminating (439 vs. 469 min/day) and had a lower (P = 0.02) number of ruminating boli when compared to the HNZ cows. The time spent eating and physical activity did not differ between strains. Concentrations of IGF-1 and T3 were lower (P ≤ 0.05) in HCH than HNZ cows. In conclusion, HCH cows were not able to increase dry matter intake in order to express their full genetic potential for milk production when kept in an organic grazing system without concentrate supplementation. On the other hand, HNZ cows seem to compensate for the reduced nutrient availability better than HCH cows but could not use that advantage for increased production efficiency

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Correct predictions of future blood glucose levels in individuals with Type 1 Diabetes (T1D) can be used to provide early warning of upcoming hypo-/hyperglycemic events and thus to improve the patient's safety. To increase prediction accuracy and efficiency, various approaches have been proposed which combine multiple predictors to produce superior results compared to single predictors. Three methods for model fusion are presented and comparatively assessed. Data from 23 T1D subjects under sensor-augmented pump (SAP) therapy were used in two adaptive data-driven models (an autoregressive model with output correction - cARX, and a recurrent neural network - RNN). Data fusion techniques based on i) Dempster-Shafer Evidential Theory (DST), ii) Genetic Algorithms (GA), and iii) Genetic Programming (GP) were used to merge the complimentary performances of the prediction models. The fused output is used in a warning algorithm to issue alarms of upcoming hypo-/hyperglycemic events. The fusion schemes showed improved performance with lower root mean square errors, lower time lags, and higher correlation. In the warning algorithm, median daily false alarms (DFA) of 0.25%, and 100% correct alarms (CA) were obtained for both event types. The detection times (DT) before occurrence of events were 13.0 and 12.1 min respectively for hypo-/hyperglycemic events. Compared to the cARX and RNN models, and a linear fusion of the two, the proposed fusion schemes represents a significant improvement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Leipzig, Univ., Diss., 1896

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of liquid argon time projection chambers (LAr TPCs) are being built or are proposed for neutrino experiments on long- and short baseline beams. For these detectors, a distortion in the drift field due to geometrical or physics reasons can affect the reconstruction of the events. Depending on the TPC geometry and electric drift field intensity, this distortion could be of the same magnitude as the drift field itself. Recently, we presented a method to calibrate the drift field and correct for these possible distortions. While straight cosmic ray muon tracks could be used for calibration, multiple coulomb scattering and momentum uncertainties allow only a limited resolution. A UV laser instead can create straight ionization tracks in liquid argon, and allows one to map the drift field along different paths in the TPC inner volume. Here we present a UV laser feed-through design with a steerable UV mirror immersed in liquid argon that can point the laser beam at many locations through the TPC. The straight ionization paths are sensitive to drift field distortions, a fit of these distortion to the linear optical path allows to extract the drift field, by using these laser tracks along the whole TPC volume one can obtain a 3D drift field map. The UV laser feed-through assembly is a prototype of the system that will be used for the MicroBooNE experiment at the Fermi National Accelerator Laboratory (FNAL).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Indoor localization systems become more interesting for researchers because of the attractiveness of business cases in various application fields. A WiFi-based passive localization system can provide user location information to third-party providers of positioning services. However, indoor localization techniques are prone to multipath and Non-Line Of Sight (NLOS) propagation, which lead to significant performance degradation. To overcome these problems, we provide a passive localization system for WiFi targets with several improved algorithms for localization. Through Software Defined Radio (SDR) techniques, we extract Channel Impulse Response (CIR) information at the physical layer. CIR is later adopted to mitigate the multipath fading problem. We propose to use a Nonlinear Regression (NLR) method to relate the filtered power information to propagation distances, which significantly improves the ranging accuracy compared to the commonly used log-distance path loss model. To mitigate the influence of ranging errors, a new trilateration algorithm is designed as well by combining Weighted Centroid and Constrained Weighted Least Square (WC-CWLS) algorithms. Experiment results show that our algorithm is robust against ranging errors and outperforms the linear least square algorithm and weighted centroid algorithm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a new boundary layer formalism on the basis of which a class of exact solutions to the Navier–Stokes equations is derived. These solutions describe laminar boundary layer flows past a flat plate under the assumption of one homogeneous direction, such as the classical swept Hiemenz boundary layer (SHBL), the asymptotic suction boundary layer (ASBL) and the oblique impingement boundary layer. The linear stability of these new solutions is investigated, uncovering new results for the SHBL and the ASBL. Previously, each of these flows had been described with its own formalism and coordinate system, such that the solutions could not be transformed into each other. Using a new compound formalism, we are able to show that the ASBL is the physical limit of the SHBL with wall suction when the chordwise velocity component vanishes while the homogeneous sweep velocity is maintained. A corresponding non-dimensionalization is proposed, which allows conversion of the new Reynolds number definition to the classical ones. Linear stability analysis for the new class of solutions reveals a compound neutral surface which contains the classical neutral curves of the SHBL and the ASBL. It is shown that the linearly most unstable Görtler–Hämmerlin modes of the SHBL smoothly transform into Tollmien–Schlichting modes as the chordwise velocity vanishes. These results are useful for transition prediction of the attachment-line instability, especially concerning the use of suction to stabilize boundary layers of swept-wing aircraft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

All-sky Meteor Orbit System (AMOS) is a semi-autonomous video observatory for detection of transient events on the sky, mostly the meteors. Its hardware and software development and permanent placement on several locations in Slovakia allowed the establishment of Slovak Video Meteor Network (SVMN) monitoring meteor activity above the Central Europe. The data reduction, orbital determination and additional results from AMOS cameras–the SVMN database– as well as from observational expeditions on Canary Islands and in Canada provided dynamical and physical data for better understanding of mutual connections between parent bodies of asteroids and comets and their meteoroid streams. We present preliminary results on exceptional and rare meteor streams such as September ε Perseids (SPE) originated from unknown long periodic comet on a retrograde orbit, suspected asteroidal meteor stream of April α Comae Berenicids (ACO) in the orbit of meteorites Příbram and Neuschwanstein and newly observed meteor stream Camelopardalids (CAM) originated from Jupiter family comet 209P/Linear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent reports focusing on virulence factors of periodontal pathogens implicated proteinases as major determinants of remarkable pathogenicity of these species, with special emphasis on their capacity to modulate complement activity. In particular, bacteria-mediated cleavage of C5 and subsequent release of C5a seems to be an important phenomenon in the manipulation of the local inflammatory response in periodontitis. In this study, we present mirolysin, a novel metalloproteinase secreted by Tannerella forsythia, a well-recognized pathogen strongly associated with periodontitis. Mirolysin exhibited a strong effect on all complement pathways. It inhibited the classical and lectin complement pathways due to efficient degradation of mannose-binding lectin, ficolin-2, ficolin-3, and C4, whereas inhibition of the alternative pathway was caused by degradation of C5. This specificity toward complement largely resembled the activity of a previously characterized metalloproteinase of T. forsythia, karilysin. Interestingly, mirolysin released the biologically active C5a peptide in human plasma and induced migration of neutrophils. Importantly, we demonstrated that combination of mirolysin with karilysin, as well as a cysteine proteinase of another periodontal pathogen, Prevotella intermedia, resulted in a strong synergistic effect on complement. Furthermore, mutant strains of T. forsythia, devoid of either mirolysin or karilysin, showed diminished survival in human serum, providing further evidence for the synergistic inactivation of complement by these metalloproteinases. Taken together, our findings on interactions of mirolysin with complement significantly add to the understanding of immune evasion strategies of T. forsythia and expand the knowledge on molecular mechanisms driving pathogenic events in the infected periodontium.