928 resultados para sol-gel transition


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sisal is a renewable agricultural resource adapted to the hostile climatic and soil conditions particularly encountered in the semi-arid areas of the state of Rio Grande do Norte. Consequently, sisal has played a strategic role in the economy of the region, as one of few options of income available in the semi-arid. Find new options and adding value to products manufactured from sisal are goals that contribute not only to the scientific and technological development of the Northeastern region, but also to the increase of the family income for people that live in the semi-arid areas where sisal is grown. Lignocellulosic fibers are extracted from sisal and commonly used to produce both handcrafted and industrial goods including ropes, mats and carpets. Alternatively, addedvalue products can be made using sisal to produce alumina fibers (Al2O3) by biotemplating, which consists in the reproduction of the natural fiber-like structure of the starting material. The objective of this study was to evaluate the conditions necessary to convert sisal into alumina fibers by biotemplating. Alumina fibers were obtaining after pretreating sisal fibers and infiltrating them with a Al2Cl6 saturated solution, alumina sol from aluminum isopropoxide or aluminum gas. Heat-treating temperatures varied from 1200 ºC to 1650 °C. The resulting fibers were then characterized by X-ray diffraction and scanning electronic microscopy. Fibers obtained by liquid infiltration revealed conversion only of the surface of the fiber into α-Al2O3, which yielded limited resistance to handling. Gas infiltration resulted in stronger fibers with better reproduction of the inner structure of the original fiber. All converted fibers consisted of 100% α-Al2O3 suggesting a wide range of technological applications especially those that require thermal isolation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

La catalyse est à la base de la fabrication de médicaments, de produits textiles, d‘engrais, des pots d’échappement, et une multitude d’autres applications de notre quotidien. En effet, dans les pays industrialisés jusqu’à 80% des produits manufacturés utilisés au quotidien ont nécessité au moins une étape de catalyse lors de leur fabrication. Outre être actif, il est primordial pour un catalyseur performant d’être résistant à la désactivation qui se traduit par la perte d’activité ou de sélectivité d’un catalyseur au cours du temps. La synthèse d’un matériau multifonctionnel permet de répondre à ces différents critères. L’objectif d’un design intelligent de matériaux est de mener à des effets synergiques de chacune des composantes. Pour un catalyseur, en plus d’être actif et sélectif pour le produit désiré, il faut en plus qu’il soit durable, stable dans le temps, et permette d’être réutilisable. L’objectif de ce projet est de faire une synthèse originale, simple et reproductible d’un catalyseur actif et résistant à la désactivation. De base, un catalyseur se compose d’un support et d’un matériau actif. La nature, la morphologie et l’agencement de ces derniers dictent le comportement chimique du catalyseur final. Comme matériau actif, les nanoparticules d’or sont très prisées en raison de leur potentiel de catalyse élevée pour de nombreuses réactions. Cependant, aux températures de fonctionnement de la catalyse, les nanoparticules d’or ont tendance à se désactiver par coalescence. Pour remédier à cela, il est possible de déposer une couche de silice mésoporeuse afin de protéger les NPs d’or des rudes conditions de réaction tout en étant perméables aux espèces réactives. Plusieurs types de matériaux peuvent servir de support aux nanoparticules d’or. À ce titre, les particules d’oxydes de fer magnétiques telles que la magnétite (Fe[indice inférieur 3]O[indice inférieur 4]) sont intéressantes pour leur potentiel hyperthermique, phénomène par lequel des nanoparticules (NPs) magnétiques transforment de l’énergie électromagnétique provenant d’un champ externe haute fréquence en chaleur, créant ainsi des nano-fours. Une première couche de silice est utilisée comme matrice de greffage afin de fixer les nanoparticules d’or sur la magnétite. La structure visée est illustrée à la Figure ci-dessous. Figure 1 Structure du catalyseur de Fe2O4@SiO2-Au-SiO2m (Ge, Zhang, Zhang, & Yin, 2008) Plusieurs avenues d’assemblage et de synthèse sont explorées pour chacune des composantes de la structure visée. Les avantages et inconvénients ainsi que des mécanismes sont proposés pour chaque voie de synthèse. Le matériau est utilisé comme catalyseur pour la réaction de réduction du 4-Nitrophénol par du NaBH4. Pour ce qui est de la synthèse de magnétite par voie solvothermique, il a été démontré qu’il était important d’être dans un milieu sous pression puisque l’étape limitante de la réaction est la solubilité des particules de magnétites dans le milieu. Cela est en accord avec le principe de mûrissement d’Ostwald selon lequel les petites particules ont tendance à se dissoudre dans le milieu et précipiter à la surface des plus grosses particules de façon à diminuer l’énergie interfaciale. Cette synthèse a été reproduite avec succès et a mené à la production de nanoparticules de Fe[indice inférieur 3]O[indice inférieur 4] sphériques creuses d’une taille de 150 [plus ou moins] 30nm. Ces sphères creuses ont été recouvertes d’une couche de silice dense par une méthode de Stöber modifiée. Le recouvrement forme des amas de particules et est non uniforme en raison de la présence de poly(éthlyène glycol) à la sur face de la magnétite, un adjuvant présent lors de sa synthèse afin d’améliorer la dispersion de la magnétite. La synthèse et le greffage d’AuNPs sont bien maîtrisés : les AuNPs ont une taille de 17 [plus ou moins] 6nm et la quantité d’or greffé est assez élevée. Ultimement, une méthode de greffage alternative tel que le greffage par croissance in situ de nanoparticules d’or pourrait être emprunté afin d’obtenir des particules plus petites. Pour ce qui est de la formation d’une couche de silice mésoporeuse, la méthode par calcination est une meilleure option que par gravure chimique en raison de sa sélectivité envers la couche externe de silice plus élevée ainsi que la formation apparente de pores.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work the maximum carbon dioxide adsorption capacity of carbon aerogels, obtained by a sol-gel process using 2,4-dihydroxybenzoic acid/formaldehyde (DHBAF) and resorcinol/formaldehyde (RF) as precursors, was studied. The effect of increasing the temperature of carbonization and physical activation of the samples DHBAF was also studied. The results showed that the maximum adsorption capacity is favoured at lower temperatures, adsorption and desorption are rapid and the performance is maintained over several cycles of CO2 adsorption/desorption. A comparison with samples of commercial carbons was also made and it was concluded that carbon aerogels exhibit a behaviour comparable or superior to that obtained for the commercial carbons studied.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Technical diversity and various knowledge is required for the understanding of undoubtedly complex system such as a Lithium-ion battery. The peculiarity is to combine different techniques that allow a complete investigation while the battery is working. Nowadays, research on Li-ion batteries (LIBs) is experiencing an exponential growth in the development of new cathode materials. Accordingly, Li-rich and Ni-rich NMCs, which have similar layered structure of LiMO2 oxides, have been recently proposed. Despite the promising performance on them, still a lot of issues have to be resolved and the materials need a more in depth characterisation for further commercial applications. In this study LiMO2 material, in particular M = Co and Ni, will be presented. We have focused on the synthesis of pure LiCoO2 and LiNiO2 at first, followed by the mixed LiNi0.5Co0.5O2. Different ways of synthesis were investigated for LCO but the sol-gel-water method showed the best performances. An accurate and systematic structural characterization followed by the appropriate electrochemical tests were done. Moreover, the in situ techniques (in-situ XRD and in situ OEMS) allowed a deep investigation in the structural change and gas evolution upon the electrochemically driven processes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solar fuels from CO2 is a topic of current large scientific and industrial interest. In particular, photo-electrochemical cells (PECs) represent today one of the most promising technology for storing sun energy as chemical bonds exploiting carbon dioxide as starting reagent. In this thesis, the possibility of using Aurivillius-type compounds for the production of solar fuels was deeply investigated. Aurivillius-type perovskites, with general formula Bi(n+1)Fe(n-3)Ti3O(3n+3), were synthesized and fully characterized to study the influence of the number of perovskite layers as well as of the synthesis parameters onto their final properties. In particular, 8 different systems were considered increasing the amount of iron and, as a consequence, the number of perovskite layers. These compounds were synthesized through a standard solid-state reaction method as well as via a sol-gel technique and characterized by XRD, SEM and BET analyses. The band gap value and the photocatalytic activity towards Rhodamine B decomposition were assessed as well. For each system, a screen-printing ink was formulated to be deposited as photo-electrodes onto transparent conducting supports. The photo-electrodes were morphologically characterized by XRD and SEM analysis, and their electrochemical properties (cyclic and linear voltammetry, EIS, Mott-Schottky analysis) were determined. Finally, the most promising materials were tested as photo-cathode inside PEC cell under different illumination conditions, to quantify their ability to convert CO2. The obtained results show the potentiality of Aurivillius-type compounds as innovative material for carbon dioxide photo-electrochemical reduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The field of medical devices has experienced, more than others, technological advances, developments and innovations, thanks to the rapidly expanding scientific knowledge and collaboration between different disciplines such as biology, engineering and materials science. The design of functional components can be achieved by exploiting composite materials based on nanostructured smart materials, that due to the inherent characteristics of single constituents develop unique properties that make them suitable for different applications preserving excellent mechanical proprieties. For instance, recent developments have focused on the fabrication of piezoelectric devices with multiple biomedical functions, as actuation and sensing functions in one component for monitoring pressure signals. The present Ph.D. Thesis aims at investigating nanostructured smart materials embedded into a polymeric matrix to obtain a composite material that can be used as a functional component for medical devices. (i) Nanostructured piezoelectric material with self-sensing capability was successfully manufactured by using ceramic (i.e. lead zirconate titanate (PZT)) and (ii) polymeric (i.e. poly(vinylidene fluoride-trifluoro ethylene (PVDF-TRFE)) piezoelectric materials. PZT nanofibers were obtained by sol-gel electrospinning starting from synthetized PZT precursor solution. Synthesis, sol-gel electrospinning process, and thermal treatment were accurately controlled to obtain PZT nanofibers dimensionally stable with densely packed grains in the perovskite phase. To guarantee the impact resistance of the laminate, the morphology and size of the hosting filler were accurately designed by increasing the surface area to volume ratio. Moreover, to solve the issue relative to the mechanical discrepancy between rigid electronic materials/soft human tissues/different material of the device (iii) a nanostructured flexible composite material based on a network of Poly-L-lactic acid (PLLA) made of curled nanofibers that present a tuneable mechanical response as a function of the applied stress was successful fabricated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In questo lavoro di tesi è stata investigata la sintesi di compositi a base di nano particelle di biossido di titanio rivestite da un bio-tensioattivo naturale. Il noto fotocatalizzatore (Nano-TiO2) è stato accoppiato ad un bio-tensioattivo dalle riconosciute proprietà antibatteriche, antivirali e anti-tumorali per ottenere un materiale composito multifunzionale. Diverse opzioni di design sono state investigate e la sintesi ottimizzata attraverso una caratterizzazione sistematica dei materiali prodotti, sia sulle sospensioni (DLS, ELS, TEM) sia sui prodotti granulati e calcinati (XRD, FT-IR, SEM, UV-Vis., BET). Per comprendere il ruolo del bio-tensioattivo e i potenziali effetti sinergici che il materiale composito potesse generare, si sono effettuate diverse caratterizzazioni funzionali testando il materiale per la realizzazione di nano-fasi fotocatalitiche da impiegare in processi di adsorbimento/degradazione di inquinanti acquosi, per la realizzazione di rivestimenti tessili antibatterici e come composito utile per l’assorbimento di metalli pesanti.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, two different protocols for the synthesis of Nb2O5-SiO2 with a sol-gel route in which supercritical carbon dioxide was used as solvent have been developed. The tailored design of the reactor allowed the reactants to come into contact only when supercritical CO2 is present, and the high-throughput experimentation scCO2 unit allowed the screening of synthetic parameters, that led to a Nb2O5 incorporation into the silica matrix of 2.5 wt%. N2-physisorption revealed high surface areas and the presence of meso- and micropores. XRD allowed to demonstrate the amorphous character of these materials. SEM-EDX proved the excellent dispersion of Nb2O5 into the silica matrix. These materials were tested in the epoxidation of cyclooctene with hydrogen peroxide, which is considered an environmentally friendly oxidant. The catalysts were virtually inactive in an organic, polar, aprotic solvent (1,4-dioxane). However, the most active scCO2 Nb2O5-SiO2 catalyst achieved a cyclooctene conversion of 44% with a selectivity of 88% towards the epoxide when tested in ethanol. Catalytic tests on cyclohexene revealed the presence of the epoxide, which is remarkable, considering that this substrate is easily oxidised to the diol. The behaviour in protic and aprotic solvents is compared to that of TS-1.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dispersions of saturated anionic phospholipid dimyristoyl phosphatidylglycerol (DMPG) have been extensively studied regarding their peculiar thermostructural behavior. At low ionic strength, the gel-fluid transition is spread along nearly 17 degrees C, displaying several thermal events in the calorimetric profile that is quite different from the single sharp peak around 23 degrees C found for higher ionic strength DMPG dispersions. To investigate the role of charge in the bilayer transition, we carefully examine the temperature dependence of the electrical conductivity of DMPG dispersions at different concentrations, correlating the data with the corresponding differential scanning calorimetry (DSC) traces. Electrical conductivity together with electrophoretic mobility measurements allowed the calculation of the dependence of the degree of ionization of DMPG vesicles on lipid concentration and temperature. It was shown that there is a decrease in vesicle charge as the lipid concentration increases, which is probably correlated with the increase in the concentration of bulk Na(+). Apart from the known increase in the electrical conductivity along the DMPG temperature transition region, a sharp rise was observed at the bilayer pretransition for all lipid concentrations studied, possibly indicating that the beginning of the chain melting process is associated with an increase in bilayer ionization. It is confirmed here that the gel-fluid transition of DMPG at low ionic strength is accompanied by a huge increase in the dispersion viscosity. However, it is shown that this measured macroviscosity is distinct from the local viscosity felt by either charged ions or DMPG charged aggregates in measurements of electrical conductivity or electrophoretic mobility, Data presented here give support to the idea that DMPG vesicles, at low ionic strength, get more ionized along the temperature transition region and could be perforated and/or deformed vesicle structures.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The nanostructural characteristics of acid-catalyzed sonogels are studied along the aging process at 60 degreesC in saturated conditions and after the CO, supercritical extraction (aerogel). The structural evolution was studied by means of small-angle X-ray scattering (SAXS) and UV-Visible absorption techniques. The sonogel exhibits a mass fractal structure in a length scale between zeta - 1/q(0) similar to 5.3 and a(1) similar to 1/q(m) similar to 0.22 nm, as the length scale probed by SAXS. The apparent mass fractal dimension lightly increases from 2.0 for fresh gel until 2.2 for 14 days aging in wet conditions. The UV absorption also increases with the aging time in wet conditions. Both observations are consistent with the syneresis process accompanying the polycondensation progress during aging in saturated conditions. For long aging times, the wet sonogels show a light transition from a mass to a surface fractal. in a very small interval of the length scale, developing an extremely rough surface with fractal dimension D-S similar to 2.9, the fractal characteristics of the sonogels practically do not change with the alcohol exchange. With the CO2 supercritical extraction (aerogel). The interval in the length scale in which the surface fractal is defined increases, while the surface fractal dimension diminishes to D-S similar to 2.5. The mass fractal characteristics are less apparent in the aerogels. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of the present work was to characterize changes in the protein profile throughout seed development in O. catharinensis, a recalcitrant species, by two-dimensional gel electrophoresis. Protein extraction was undertaken by using a thiourea/urea buffer, followed by a precipitation step with 10% TCA. Comparative analysis during seed development showed that a large number of proteins were exclusively detected in each developmental stage. The cotyledonary stage, which represents the transition phase between embryogenesis and the beginning of metabolism related to maturation, presents the highest number of stage-specific spots. Protein identification, through MS/MS analysis, resulted in the identification of proteins mainly related to oxidative metabolism and storage synthesis. These findings contribute to a better understanding of protein metabolism during seed development in recalcitrant seeds, besides providing information on established markers that could be useful in defining and improving somatic embryogenesis protocols, besides monitoring the development of somatic embryos in this species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crystal structure of compositionally homogeneous, nanocrystalline ZrO2-CeO2 solutions was investigated by X-ray powder diffraction as a function of temperature for compositions between 50 and 65 mol % CeO2 center dot ZrO2-50 and 60 mol % CeO2 solid solutions, which exhibit the t'-form of the tetragonal phase at room temperature, transform into the cubic phase in two steps: t'-to-t '' followed by t ''-to-cubic. But the ZrO2-65 mol % CeO2, which exhibits the t ''-form, transforms directly to the cubic phase. The results suggest that t'-to-t '' transition is of first order, but t ''-to-cubic seems to be of second order. (C) 2008 International Centre for Diffraction Data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The transition between tetragonal and cubic phases in nanostructured ZrO2-Sc2O3 solid solutions by high-temperature X-ray powder diffraction using synchrotron radiation is presented. ZrO2-8 and 11 mol% Sc2O3 nanopowders that exhibit the t'- and t ''-forms of the tetragonal phase, respectively, were synthesized by a stoichiometric nitrate-lysine gel-combustion route. The average crystallite size treated at 900 degrees C was about 25 nm for both compositions. Our results showed that t'-t '' and t ''-cubic transitions take place for the 8 and 11 mol% Sc2O3 samples, respectively. (C) 2008 International Centre for Diffraction Data.