961 resultados para sol-gel processing
Resumo:
Hybrid materials, containing in-situ synthesized lanthanide complexes with intense green light, have been prepared via sol-gel process. The luminescence properties and the decay times of as-synthesized samples were investigated. The excitation spectrum of the samples indicates the formation of complexes between terbium (III) and P-Sulfosalicylic acid. The hybrid materials that contain in-situ synthesized terbium complexes exhibit the characteristic emission bands of the rare earth ions. In addition, the effect of concentration of terbium on the luminescence properties as well as the thermal stability were also studied.
Resumo:
By using metal nitrates and oxides as the starting materials, Y2Al5O12 (YAG) and YAG:Re3+ (Re = Ce, Sm, Th) powder phosphors were prepared by solid-state (SS), coprecipitation (CP) and citrate gel (CG) methods. The resulting YAG and YAG-based phosphors were characterized by XRD, FT-IR, SEM and photoluminescent excitation and emission spectra. The purified crystalline phases of YAG were obtained at 800 degreesC (CG) and 900 degreesC (CP, SS). At an identical annealing temperature and doping concentration, the doped rare-earth ions showed the stronger emission intensity in the CP- and SS-derived phosphors than the CG-derived YAG phosphors. The poor emission intensity for the CG-derived phosphors is mainly caused by the contamination of carbon impurities from citric acid in the starting materials.
Resumo:
New monomer N-(4-carboxyphenyl)-NL-(propyltriethoxysilyl)urea (1) which acts as both a ligand for Th3+ ion and a sol-gel precursor has been synthesized and characterized by H-1 NMR, and MS. Hybrid luminescent thin films consisting of organoterbium covalently bonded to a silica-based network have been obtained in situ via a sol-gel approach. Strong line emission of Tb3+ ion was observed from the hybrid luminescent films under UV excitation.
Resumo:
Novel hybrid thin films covalently doped with Eu3+ (Tb3+) have been prepared via direct routes involving co-condensation of tetraethoxysilane and phen-Si in the presence of Eu3+ (Tb3+) by spin-casting and their luminescence properties have been investigated in detail. Lanthanide ions can be sensitized by anchored phenanthroline in hybrid thin films. Excitation at the ligand absorption wavelength (272 nm) resulted in the strong emission of the lanthanide ions i.e. Eu3+ D-5(0)-F-7(J) (J=0, 1, 2, 3, 4) emission lines and Tb3+ D-5(4)-F-7(J) (J = 6, 5, 4, 3) due to the energy transfer from the ligands to the lanthanide ions.
Resumo:
A new kind of luminescent organic-inorganic hybrid material (denoted Hybrid I) consisting of europium 1,10-phenanthroline complexes covalently attached to a silica-based network was prepared by a sol-gel process. 1,10-Phenanthroline grafted to 3-(triethoxysilyl)propyl isocyanate was used as one of the precursors for the preparation of an organic-inorganic hybrid materials. For comparison purposes, the hybrid material (denoted Hybrid II) in which phenanthroline was not grafted onto the silica backbone of the frameworks was also prepared. Elemental analysis; NMR, FT-IR, UV/vis absorption, and luminescence spectroscopies, and luminescence decay analysis were used to characterize the obtained hybrid materials. It is shown that the homogeneity of Hybrid I is superior to that of Hybrid II, and a higher concentration europium can be incorporated into Hybrid I than Hybrid II. Excitation at the ligand absorption wavelength (283 nm) resulted in the strong emission of the Eu3+ D-5(0)-F-7(J) (J = 0-4) transition lines as a result of the efficient energy transfer from the ligands to the EU3+ in Hybrid I. The number of water molecules coordinated to the europium ion was estimated, and the structure of the as-synthesized Hybrid I was predicted on the basis of the experimental results.
Resumo:
It is reported for the first time that the Pt-TiO2/C catalyst prepared with chemical reduction and sol-gel method showed the excellent electrocatalytic activity and stability for the electrooxidation of methanol. When the atom ratio of Ti to Pt in the catalysts is 1/2, the catalysts showed the best electrocatalytic properties. After the catalyst is treated at 500 degreesC, the performance is further improved. It is hopeful to use the catalyst in the pratical DMFC.
Resumo:
Organic-inorganic hybrid SiO2 xerogels were prepared by the sol-gel method under various preparation conditions and compositions by using tetraethoxysilane (TEOS), (3-aminopropyl) triethoxysilane (A-PS), (3-glycidoxypropyl) trimethoxysilane (GPS), organic acid (CH3COOH) and inorganic acids (HCl, HNO3, H2SO4) as the main precursors. Luminescence and FT-IR spectra were used to characterize the resulted hybrid SiO2 xerogels. The result of FT-IR spectrum shows that the xerogels are composed of non-crystalline -Si-O-Si- networks containing some organic groups such as -NH, -CH and -OH. Under the excitation of 365 nm, all the hybrid xerogels exhibit strong luminescence in the blue region, but the emission intensity and position depend on the starting precursor compositions to a large extent. Suitable amount of polyethylene glycol (PEG500 and PEG10000) in the hybrid xerogels can enhance the emission intensity. Additionally, the emission intensity of the hybrid xerogels increases with heat treatment temperature in the range of ambient to 200degreesC, and vacuum condition is also able to enhance the emission intensity.
Resumo:
A transparent thin film was prepared by depositing the sol-get mixture for the synthesis of MCM-41 mesoporous molecular sieve doped with rhodamine 6G (R6G) dye on glass substrates. The film of silica-surfactant-R6G materials, which was identified to possess hexagonally ordered mesostructure, was composed of nanocrystallites about 35 nm in diameter and 1-10 mum in thickness. Cleanness of the substrates, concentration of the sol-gel mixture and rate of evaporation of the solvent were the key factors affecting transparency and homogeneity of the film. Moreover, optical change and lack in dye aggregation were observed to the R6G-functionalized MCM-41 thin film in contrast with that in ethanol solution.
Resumo:
Graphite powder-supported cupric hexacyanoferrate (CuHCF) nanoparticles were dispersed into methyltrimethoxysilane based gels to produce a conducting carbon ceramic Composite, which was used as electrode material to fabricate surface- renewable CuHCF-modified electrodes. Electrochemical behavior of the CuHCF-modifled carbon ceramic composite electrodes was characterized using cyclic and square-wave voltammetry. Cyclic voltammograms at various scan rates indicated that peak currents were surface-confined at low scan rates. In the presence of glutathione, a clear electrocatalytic response was observed at the CuHCF-modified composite electrodes. In addition, the electrodes exhibited a distinct advantage of reproducible surface-renewal by simple mechanical polishing on emery paper, as well as ease of preparation, and good chemical and mechanical stability in a flowing stream.
Resumo:
New methylene blue-intercalated a-zirconium phosphate (NMBZrP) was synthesized in the presence of n-butylamine and characterized by powder XRD, FTIR, TEM and elemental analysis. Sub-micron particles of NMBZrP in deionized water were apt to deposit onto the surface of graphite powder to yield graphite powder-supported NMBZrP, which was subsequently dispersed into methyltrimethoxysilane-derived gels to fabricate surface-renewable, stable, rigid carbon ceramic electrodes containing new methylene blue. Cyclic voltammetric studies revealed that peak currents of the NMBZrP-modified electrode were surface-confined at low scan rates but diffusion-controlled. at high scan rates. In addition, NMBZrP immobilized in a carbon ceramic matrix presented a two-electron, three-proton redox process in acidic aqueous solution in the pH range from 0.52 to 3.95.
Resumo:
Photoluminescent organic-inorganic composite films incorporating the rare-earth-containing polyoxometalate Na-9[EuW10O36] (EW) and poly(allylamine hydrochloride) (PAH) have been prepared by the layer-by-layer self-assembly method. UV-vis spectroscopy and ellipsometry were used to follow the fabrication process of the EW/PAH composite films. The experimental results show that the deposition process is linear and highly reproducible from layer to layer. An average EW/PAH bilayer thickness of ca. 2.1 nm was determined by ellipsometry. In addition, scanning electron microscopy and atomic force microscopy images of the EW/PAH composite films indicate that the film surface is relatively uniform and smooth. The photoluminescent properties of these films were investigated by fluorescence spectroscopy.
Resumo:
Oxyapatite NaY9Si6O26 was prepared by sol-gel method. By choosing the precursors, a single phase compound was obtained. This soft chemical method lowered the reaction temperature by 100degreesC compared with the solid state method. Its morphology was studied by transmission electron microscopy (TEM). Several rare earth ions (Eu3+, Tb3+, Dy3+) and Pb2+ ion were doped in this compound. The high resolution emission spectrum of Eu3+ showed that rare earth ions occupied two yttrium sites. In spite of the charge imbalance of Pb2+ with the cations in this compound, it was found that Pb2+ could emit in UV range and transfer its excitation energy to Dy3+ ion.
Resumo:
A novel amperometric biosensor utilizing two enzymes, glucose oxidase (GOD) and horseradish peroxidase (HRP), was developed for the cathodic detection of glucose. The glucose biosensor was constructed by electrochemical formation of a polypyrrole (PPy) membrane in the presence of GOD on the surface of a HRP-modified sol-gel derived-mediated ceramic carbon electrode. Ferrocenecarboxylic acid (FCA) was used as mediator to transfer electron between enzyme and electrode. In the hetero-bilayer configuration of electrode, all enzymes were well immobilized in electrode matrices and showed favorable enzymatic activities. The amperometric detection of glucose was carried out at +0.16 V (versus saturated calomel reference electrode (SCE)) in 0.1 M phosphate buffer solution (pH 6.9) with a linear response range between 8.0 x 10(-5) and 1.3 x 10(-3) M glucose. The biosensor showed a good suppression of interference in the amperometric detection.
Resumo:
两种经过化学修饰的PPV(聚对苯撑乙烯 )类共轭高分子共聚物分别与纳米TiO2 复合 ,作为有机 /无机复合材料进行研究 .这两种共聚物在乙醇、二氯甲烷溶液中分别与以Sol Gel法、反胶束法制得的TiO2 共混得到均匀分散的体系而不出现相分离 .用共聚物与TiO2 的复合液可以在石英基底上制成均匀的复合膜 .结果表明 ,高聚物 /TiO2 复合物的光物理特性与单纯的高聚物相比呈现明显的差异 ;不同粒径的纳米TiO2 对复合物性能的影响不同 ;中间苯环的取代基对共聚物的性质影响明显 .共轭高分子与纳米TiO2 复合涂膜后其发光性能明显改善 ,有作为发光器件的应用前景
Resumo:
New luminescent hybrid mesoporous material was prepared by covalent anchoring rare earth complex onto MCM-41 by a postsynthesis approach. The monomer (referred to here as PABI) which plays double roles, i.e., as a ligand for lanthanide ion and as an organic functional molecule to modify MCM-41 is synthesized and characterized by H-1 NMR and MS. The fluorescence spectra show clearly that the hybrid mesoporous material possesses excellent luminescence characteristics. The hybrid mesoporous material retains the structure of MCM-41 after modification.