933 resultados para socioeconomic level
Wetlands and riparian zones as buffers and critical habitats for biotic communities in Lake Victoria
Resumo:
Despite their ecological and socio-economic importance, Lake Victoria's adjoining "swamps" and lake interface are among the least investigated parts of the lake. The "swamps" a term commonly equated to "wastelands" and the difficult working environment they present in comparison to open water, are major factors for the low level of attention accorded to shoreline wetlands. Moreover, definitions of wetlands highlighted for example in the Ramsar Convention as "areas of marsh, fern, peatland or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh or brackish, or salt, including areas of marine water, the depth of which does not exceed six metres" (Ramsar, 1971) were designed to protect birds (water fowl) of international importance. The Ramsar definition, which also includes oceans, has till recently been of limited use for Lake Victoria, because itdoes not fully recognise wetlands in relation to other public concerns such as water quality, biodiversity and the tisheries that are of higher socioeconomic priority than waterfowl. Prior to 1992, fishery research on Lake Victoria included studies of inshore shallow habitats of the lake without specific reference to distance or the type of vegetation at the shore. Results of these studies also conveniently relied heavily on trawl and gill net data from the 5-10 m depth zones as the defining boundary of shallow inshore habitats. In Lake Victoria, such a depth range can be at least one kilometre from the lake interface and by the 10m depth contour, habitats are in the sub-littoral range. Findings from these studies could thus not be used to make direct inferences on the then assumed importance of Lake Victoria wetlands in general.
Resumo:
The paper provides key for the identification of the East African marine fishes. Just like in most determination keys this one is based on the "either-or" principle, i.e. there is a single alternatIve at each point. A specimen either fits all the characters recorded, or fails to conform to one or more characters and you should then proceed to the next number, keeping this up until the fish to be identified does fit all the characters.
Resumo:
Electron tunnelling through semiconductor tunnel barriers is exponentially sensitive to the thickness of the barrier layer, and in the most common system, the AlAs tunnel barrier in GaAs, a one monolayer variation in thickness results in a 300% variation in the tunnelling current for a fixed bias voltage. We use this degree of sensitivity to demonstrate that the level of control at 0.06 monolayer can be achieved in the growth by molecular beam epitaxy, and the geometrical variation of layer thickness across a wafer at the 0.01 monolayer level can be detected.
Resumo:
Level II reliability theory provides an approximate method whereby the reliability of a complex engineering structure which has multiple strength and loading variables may be estimated. This technique has been applied previously to both civil and offshore structures with considerable success. The aim of the present work is to assess the applicability of the method for aircraft structures, and to this end landing gear design is considered in detail. It is found that the technique yields useful information regarding the structural reliability, and further it enables the critical design parameters to be identified.
Resumo:
This paper provides an overview of the rationale behind the significant interest in polymer-based on-board optical links together with a brief review of recently reported work addressing certain challenges in this field. Polymer-based optical links have garnered considerable research attention due to their important functional attributes and compelling cost-benefit advantages in on-board optoelectronic systems as they can be cost-effectively integrated on conventional printed circuit boards. To date, significant work on the polymer materials, their fabrication process and their integration on standard board substrates have enabled the demonstration of numerous high-speed on-board optical links. However, to be deployed in real-world systems, these optoelectronic printed circuit boards (OE PCBs) must also be cost-effective. Here, recent advances in the integration process focusing on simple direct end-fire coupling schemes and the use of low-cost FR4 PCB substrates are presented. Performance of two proof-of-principle 10 Gb/s systems based on this integration method are summarised while work in realising more complex yet compact planar optical components is outlined. © 2011 IEEE.
Resumo:
In this article, we detail the methodology developed to construct arbitrarily high order schemes - linear and WENO - on 3D mixed-element unstructured meshes made up of general convex polyhedral elements. The approach is tailored specifically for the solution of scalar level set equations for application to incompressible two-phase flow problems. The construction of WENO schemes on 3D unstructured meshes is notoriously difficult, as it involves a much higher level of complexity than 2D approaches. This due to the multiplicity of geometrical considerations introduced by the extra dimension, especially on mixed-element meshes. Therefore, we have specifically developed a number of algorithms to handle mixed-element meshes composed of convex polyhedra with convex polygonal faces. The contribution of this work concerns several areas of interest: the formulation of an improved methodology in 3D, the minimisation of computational runtime in the implementation through the maximum use of pre-processing operations, the generation of novel methods to handle complex 3D mixed-element meshes and finally the application of the method to the transport of a scalar level set. © 2012 Global-Science Press.
Resumo:
A comparative study on the structures of some mRNAs and their encoded proteins shows an intriguing correlation between the two foldings. Non-random distribution of codons in the secondary structures of mRNAs is also shown, which appears to be in accordance with the conformational properties of amino acids in protein structures to some extent. These results seem to suggest that there may be a kind of genetic relationship between mRNA and protein at three-dimensional level.
Resumo:
Growing environmental concerns caused by natural resource depletion and pollution need to be addressed. One approach to these problems is Sustainable Development, a key concept for our society to meet present as well as future needs worldwide. Manufacturing clearly has a major role to play in the move towards a more sustainable society. However it appears that basic principles of environmental sustainability are not systematically applied, with practice tending to focus on local improvements. The aim of the work presented in this paper is to adopt a more holistic view of the factory unit to enable opportunities for wider improvement. This research analyses environmental principles and industrial practice to develop a conceptual manufacturing ecosystem model as a foundation to improve environmental performance. The model developed focuses on material, energy and waste flows to better understand the interactions between manufacturing operations, supporting facilities and surrounding buildings. The research was conducted in three steps: (1) existing concepts and models for industrial sustainability were reviewed and environmental practices in manufacturing were collected and analysed; (2) gaps in knowledge and practice were identified; (3) the outcome is a manufacturing ecosystem model based on industrial ecology (IE). This conceptual model has novelty in detailing IE application at factory level and integrating all resource flows. The work is a base on which to build quantitative modelling tools to seek integrated solutions for lower resource input, higher resource productivity, fewer wastes and emissions, and lower operating cost within the boundary of a factory unit. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
A scalable multi-channel optical regenerative bus architecture based on the use of polymer waveguides is presented for the first time. The architecture offers high-speed interconnection between electrical cards allowing regenerative bus extension with multiple segments and therefore connection of an arbitrary number of cards onto the bus. In a proof-ofprinciple demonstration, a 4-channel 3-card polymeric bus module is designed and fabricated on standard FR4 substrates. Low insertion losses (≤ -15 dB) and low crosstalk values (< -30 dB) are achieved for the fabricated samples while better than ± 6 μm -1 dB alignment tolerances are obtained. 10 Gb/s data communication with a bit-error-rate (BER) lower than 10-12 is demonstrated for the first time between card interfaces on two different bus modules using a prototype 3R regenerator. © 2012 Optical Society of America.
Resumo:
A scalable polymer waveguide-based regenerative optical bus architecture for use in board-level communications is presented. As a proof-of-principle demonstration, a 4-channel polymer bus formed on a FR4 substrate providing 10 Gb/s/channel data transmission is reported. © 2012 OSA.
Resumo:
In this paper we present a wafer level three-dimensional simulation model of the Gate Commutated Thyristor (GCT) under inductive switching conditions. The simulations are validated by extensive experimental measurements. To the authors' knowledge such a complex simulation domain has not been used so far. This method allows the in depth study of large area devices such as GCTs, Gate Turn Off Thyristors (GTOs) and Phase Control Thyristors (PCTs). The model captures complex phenomena, such as current filamentation including subsequent failure, which allow us to predict the Maximum Controllable turn-off Current (MCC) and the Safe Operating Area (SOA) previously impossible using 2D distributed models. © 2012 IEEE.