955 resultados para sky
Resumo:
Climate simulations show consistent large-scale temperature responses including amplified land–ocean contrast, high-latitude/low-latitude contrast, and changes in seasonality in response to year-round forcing, in both warm and cold climates, and these responses are proportional and nearly linear across multiple climate states. We examine the possibility that a small set of common mechanisms controls these large-scale responses using a simple energy-balance model to decompose the temperature changes shown in multiple lgm and abrupt4 × CO 2 simulations from the CMIP5 archive. Changes in the individual components of the energy balance are broadly consistent across the models. Although several components are involved in the overall temperature responses, surface downward clear-sky longwave radiation is the most important component driving land–ocean contrast and high-latitude amplification in both warm and cold climates. Surface albedo also plays a significant role in promoting high-latitude amplification in both climates and in intensifying the land–ocean contrast in the warm climate case. The change in seasonality is a consequence of the changes in land–ocean and high-latitude/low-latitude contrasts rather than an independent temperature response. This is borne out by the fact that no single component stands out as being the major cause of the change in seasonality, and the relative importance of individual components is different in cold and warm climates.
Resumo:
This article considers the ways in which British youth telefantasy Misfits (E4, 2009–13) takes up and makes strange urban spaces familiar from social-realist narratives. Filmed on the sprawling East London estate, Thamesmead, the programme chronicles a group of young offenders who are given powers by a freak storm, turning them into ‘ASBO superheroes’. Misfits depends on its British urban landscapes for the assertion of its ‘authenticity’ within British youth television, using spaces and landscapes familiar from urban youth exploitation cinema and television's narratives of the underclass. After situating the series within existing cultural discourses and recent developments in social-realist representations, the article explores how Misfits disrupts what have become signifiers for the ‘real’ – the brutalism of housing estates, the grey of the concrete and sky – by making them strange, turning them into telefantasy. The series presents the estate as an uncanny place: the domestic, social-realist world shifted into a fantastical space by the storm. Through close analysis, this article explores how the familiar spaces become skewed and unsettling to match our protagonists' isolation, shifting bodies and scrambled sense of self.
Resumo:
Satellite based top-of-atmosphere (TOA) and surface radiation budget observations are combined with mass corrected vertically integrated atmospheric energy divergence and tendency from reanalysis to infer the regional distribution of the TOA, atmospheric and surface energy budget terms over the globe. Hemispheric contrasts in the energy budget terms are used to determine the radiative and combined sensible and latent heat contributions to the cross-equatorial heat transports in the atmosphere (AHT_EQ) and ocean (OHT_EQ). The contrast in net atmospheric radiation implies an AHT_EQ from the northern hemisphere (NH) to the southern hemisphere (SH) (0.75 PW), while the hemispheric difference in sensible and latent heat implies an AHT_EQ in the opposite direction (0.51 PW), resulting in a net NH to SH AHT_EQ (0.24 PW). At the surface, the hemispheric contrast in the radiative component (0.95 PW) dominates, implying a 0.44 PW SH to NH OHT_EQ. Coupled model intercomparison project phase 5 (CMIP5) models with excessive net downward surface radiation and surface-to-atmosphere sensible and latent heat transport in the SH relative to the NH exhibit anomalous northward AHT_EQ and overestimate SH tropical precipitation. The hemispheric bias in net surface radiative flux is due to too much longwave surface radiative cooling in the NH tropics in both clear and all-sky conditions and excessive shortwave surface radiation in the SH subtropics and extratropics due to an underestimation in reflection by clouds.
Resumo:
Substantial changes in anthropogenic aerosols and precursor gas emissions have occurred over recent decades due to the implementation of air pollution control legislation and economic growth. The response of atmospheric aerosols to these changes and the impact on climate are poorly constrained, particularly in studies using detailed aerosol chemistry–climate models. Here we compare the HadGEM3-UKCA (Hadley Centre Global Environment Model-United Kingdom Chemistry and Aerosols) coupled chemistry–climate model for the period 1960–2009 against extensive ground-based observations of sulfate aerosol mass (1978–2009), total suspended particle matter (SPM, 1978–1998), PM10 (1997–2009), aerosol optical depth (AOD, 2000–2009), aerosol size distributions (2008–2009) and surface solar radiation (SSR, 1960–2009) over Europe. The model underestimates observed sulfate aerosol mass (normalised mean bias factor (NMBF) = −0.4), SPM (NMBF = −0.9), PM10 (NMBF = −0.2), aerosol number concentrations (N30 NMBF = −0.85; N50 NMBF = −0.65; and N100 NMBF = −0.96) and AOD (NMBF = −0.01) but slightly overpredicts SSR (NMBF = 0.02). Trends in aerosol over the observational period are well simulated by the model, with observed (simulated) changes in sulfate of −68 % (−78 %), SPM of −42 % (−20 %), PM10 of −9 % (−8 %) and AOD of −11 % (−14 %). Discrepancies in the magnitude of simulated aerosol mass do not affect the ability of the model to reproduce the observed SSR trends. The positive change in observed European SSR (5 %) during 1990–2009 ("brightening") is better reproduced by the model when aerosol radiative effects (ARE) are included (3 %), compared to simulations where ARE are excluded (0.2 %). The simulated top-of-the-atmosphere aerosol radiative forcing over Europe under all-sky conditions increased by > 3.0 W m−2 during the period 1970–2009 in response to changes in anthropogenic emissions and aerosol concentrations.
Resumo:
In this work, the Cloud Feedback Model Intercomparison (CFMIP) Observation Simulation Package (COSP) is expanded to include scattering and emission effects of clouds and precipitation at passive microwave frequencies. This represents an advancement over the official version of COSP (version 1.4.0) in which only clear-sky brightness temperatures are simulated. To highlight the potential utility of this new microwave simulator, COSP results generated using the climate model EC-Earth's version 3 atmosphere as input are compared with Microwave Humidity Sounder (MHS) channel (190.311 GHz) observations. Specifically, simulated seasonal brightness temperatures (TB) are contrasted with MHS observations for the period December 2005 to November 2006 to identify possible biases in EC-Earth's cloud and atmosphere fields. The EC-Earth's atmosphere closely reproduces the microwave signature of many of the major large-scale and regional scale features of the atmosphere and surface. Moreover, greater than 60 % of the simulated TB are within 3 K of the NOAA-18 observations. However, COSP is unable to simulate sufficiently low TB in areas of frequent deep convection. Within the Tropics, the model's atmosphere can yield an underestimation of TB by nearly 30 K for cloudy areas in the ITCZ. Possible reasons for this discrepancy include both incorrect amount of cloud ice water in the model simulations and incorrect ice particle scattering assumptions used in the COSP microwave forward model. These multiple sources of error highlight the non-unique nature of the simulated satellite measurements, a problem exacerbated by the fact that EC-Earth lacks detailed micro-physical parameters necessary for accurate forward model calculations. Such issues limit the robustness of our evaluation and suggest a general note of caution when making COSP-satellite observation evaluations.
Resumo:
This paper shows that radiometer channel radiances for cloudy atmospheric conditions can be simulated with an optimised frequency grid derived under clear-sky conditions. A new clear-sky optimised grid is derived for AVHRR channel 5 ð12 m m, 833 cm �1 Þ. For HIRS channel 11 ð7:33 m m, 1364 cm �1 Þ and AVHRR channel 5, radiative transfer simulations using an optimised frequency grid are compared with simulations using a reference grid, where the optimised grid has roughly 100–1000 times less frequencies than the full grid. The root mean square error between the optimised and the reference simulation is found to be less than 0.3 K for both comparisons, with the magnitude of the bias less than 0.03 K. The simulations have been carried out with the radiative transfer model Atmospheric Radiative Transfer Simulator (ARTS), version 2, using a backward Monte Carlo module for the treatment of clouds. With this module, the optimised simulations are more than 10 times faster than the reference simulations. Although the number of photons is the same, the smaller number of frequencies reduces the overhead for preparing the optical properties for each frequency. With deterministic scattering solvers, the relative decrease in runtime would be even more. The results allow for new radiative transfer applications, such as the development of new retrievals, because it becomes much quicker to carry out a large number of simulations. The conclusions are applicable to any downlooking infrared radiometer.
Resumo:
A study has been carried out to assess the importance of radiosonde corrections in improving the agreement between satellite and radiosonde measurements of upper-tropospheric humidity. Infrared [High Resolution Infrared Radiation Sounder (HIRS)-12] and microwave [Advanced Microwave Sounding Unit (AMSU)-18] measurements from the NOAA-17 satellite were used for this purpose. The agreement was assessed by comparing the satellite measurements against simulated measurements using collocated radiosonde profiles of the Atmospheric Radiation Measurement (ARM) Program undertaken at tropical and midlatitude sites. The Atmospheric Radiative Transfer Simulator (ARTS) was used to simulate the satellite radiances. The comparisons have been done under clear-sky conditions, separately for daytime and nighttime soundings. Only Vaisala RS92 radiosonde sensors were used and an empirical correction (EC) was applied to the radiosonde measurements. The EC includes correction for mean calibration bias and for solar radiation error, and it removes radiosonde bias relative to three instruments of known accuracy. For the nighttime dataset, the EC significantly reduces the bias from 0.63 to 20.10 K in AMSU-18 and from 1.26 to 0.35 K in HIRS-12. The EC has an even greater impact on the daytime dataset with a bias reduction from 2.38 to 0.28 K in AMSU-18 and from 2.51 to 0.59 K in HIRS-12. The present study promises a more accurate approach in future radiosonde-based studies in the upper troposphere.
Resumo:
Sea surface temperature (SST) data are often provided as gridded products, typically at resolutions of order 0.05 degrees from satellite observations to reduce data volume at the request of data users and facilitate comparison against other products or models. Sampling uncertainty is introduced in gridded products where the full surface area of the ocean within a grid cell cannot be fully observed because of cloud cover. In this paper we parameterise uncertainties in SST as a function of the percentage of clear-sky pixels available and the SST variability in that subsample. This parameterisation is developed from Advanced Along Track Scanning Radiometer (AATSR) data, but is applicable to all gridded L3U SST products at resolutions of 0.05-0.1 degrees, irrespective of instrument and retrieval algorithm, provided that instrument noise propagated into the SST is accounted for. We also calculate the sampling uncertainty of ~0.04 K in Global Area Coverage (GAC) Advanced Very High Resolution Radiometer (AVHRR) products, using related methods.
Resumo:
The relationships between the four radiant fluxes are analyzed based on a 4 year data archive of hourly and daily global ultraviolet (I(UV)), photosynthetically active-PAR (I(PAR)), near infrared (I(NIR)) and broadband global solar radiation (I(G)) collected at Botucatu, Brazil. These data are used to establish both the fractions of spectral components to global solar radiation and the proposed linear regression models. Verification results indicated that the proposed regression models predict accurately the spectral radiant fluxes at least for the Brazilian environment. Finally, results obtained in this analysis agreed well with most published results in the literature. (c) 2010 Elsevier Ltd. All rights reserved.
An improved estimate of leaf area index based on the histogram analysis of hemispherical photographs
Resumo:
Leaf area index (LAI) is a key parameter that affects the surface fluxes of energy, mass, and momentum over vegetated lands, but observational measurements are scarce, especially in remote areas with complex canopy structure. In this paper we present an indirect method to calculate the LAI based on the analyses of histograms of hemispherical photographs. The optimal threshold value (OTV), the gray-level required to separate the background (sky) and the foreground (leaves), was analytically calculated using the entropy crossover method (Sahoo, P.K., Slaaf, D.W., Albert, T.A., 1997. Threshold selection using a minimal histogram entropy difference. Optical Engineering 36(7) 1976-1981). The OTV was used to calculate the LAI using the well-known gap fraction method. This methodology was tested in two different ecosystems, including Amazon forest and pasturelands in Brazil. In general, the error between observed and calculated LAI was similar to 6%. The methodology presented is suitable for the calculation of LAI since it is responsive to sky conditions, automatic, easy to implement, faster than commercially available software, and requires less data storage. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The seasonal evolution of daily and hourly values of global and diffuse solar radiation at the surface are compared for the cities of Sao Paulo and Botucatu, both located in Southeast Brazil and representative of urban and rural areas, respectively. The comparisons are based on measurements of global and diffuse solar irradiance carried out at the surface during a six year simultaneous period in these two cities. Despite the similar latitude and altitude, the seasonal evolution of daily values indicate that Sao Paulo receives, during clear sky days, 7.8% less global irradiance in August and 5.1% less in June than Botucatu. On the other hand, Sao Paulo receives, during clear sky days, 3.6% more diffuse irradiance in August and 15.6% more in June than Botucatu. The seasonal variation of the diurnal cycle confirms these differences and indicates that they are more pronounced during the afternoon. The regional differences are related to the distance from the Atlantic Ocean, systematic penetration of the sea breeze and daytime evolution of the particulate matter in Sao Paulo. An important mechanism controlling the spatial distribution of solar radiation, on a regional scale, is the sea breeze penetration in Sao Paulo, bringing moisture and maritime aerosol that in turn further increases the solar radiation scattering due to pollution and further reduces the intensity of the direct component of solar radiation at the surface. Surprisingly, under clear sky conditions the atmospheric attenuation of solar radiation in Botucatu during winter - the biomass burning period due to the sugar cane harvest - is equivalent to that at Sao Paulo City, indicating that the contamination during sugar cane harvest in Southeast Brazil has a large impact in the solar radiation field at the surface.
Resumo:
This continuing study of intragroup light in compact groups of galaxies aims to establish new constraints to models of formation and evolution of galaxy groups, specially of compact groups, which are a key part in the evolution of larger structures, such as clusters. In this paper we present three additional groups (HCG 15, 35 and 51) using deep wide-field B- and R-band images observed with the LAICA camera at the 3.5-m telescope at the Calar Alto observatory (CAHA). This instrument provides us with very stable flat-fielding, a mandatory condition for reliably measuring intragroup diffuse light. The images were analysed with the OV_WAV package, a wavelet technique that allows us to uncover the intragroup component in an unprecedented way. We have detected that 19, 15 and 26 per cent of the total light of HCG 15, 35 and 51, respectively, are in the diffuse component, with colours that are compatible with old stellar populations and with mean surface brightness that can be its low as 28.4 B mag arcsec(-2). Dynamical masses, crossing times and mass-to-light ratios were recalculated using the new group parameters. Also tidal features were analysed using the wavelet technique.
Resumo:
We explore the prospects of predicting emission-line features present in galaxy spectra given broad-band photometry alone. There is a general consent that colours, and spectral features, most notably the 4000 angstrom break, can predict many properties of galaxies, including star formation rates and hence they could infer some of the line properties. We argue that these techniques have great prospects in helping us understand line emission in extragalactic objects and might speed up future galaxy redshift surveys if they are to target emission-line objects only. We use two independent methods, Artificial Neural Networks (based on the ANNz code) and Locally Weighted Regression (LWR), to retrieve correlations present in the colour N-dimensional space and to predict the equivalent widths present in the corresponding spectra. We also investigate how well it is possible to separate galaxies with and without lines from broad-band photometry only. We find, unsurprisingly, that recombination lines can be well predicted by galaxy colours. However, among collisional lines some can and some cannot be predicted well from galaxy colours alone, without any further redshift information. We also use our techniques to estimate how much information contained in spectral diagnostic diagrams can be recovered from broad-band photometry alone. We find that it is possible to classify active galactic nuclei and star formation objects relatively well using colours only. We suggest that this technique could be used to considerably improve redshift surveys such as the upcoming Fibre Multi Object Spectrograph (FMOS) survey and the planned Wide Field Multi Object Spectrograph (WFMOS) survey.
Resumo:
NGC 6908, an S0 galaxy situated in the direction of NGC 6907, was only recently recognized as a distinct galaxy, instead of only a part of NGC 6907. We present 21-cm radio synthesis observations obtained with the Giant Metrewave Radio Telescope (GMRT) and optical images and spectroscopy obtained with the Gemini-North telescope of this pair of interacting galaxies. From the radio observations, we obtained the velocity field and the H I column density map of the whole region containing the NGC 6907/8 pair, and by means of the Gemini multi-object spectroscopy we obtained high-quality photometric images and 5 angstrom resolution spectra sampling the two galaxies. By comparing the rotation curve of NGC 6907 obtained from the two opposite sides around the main kinematic axis, we were able to distinguish the normal rotational velocity field from the velocity components produced by the interaction between the two galaxies. Taking into account the rotational velocity of NGC 6907 and the velocity derived from the absorption lines for NGC 6908, we verified that the relative velocity between these systems is lower than 60 km s(-1). The emission lines observed in the direction of NGC 6908, not typical of S0 galaxies, have the same velocity expected for the NGC 6907 rotation curve. Some emission lines are superimposed on a broader absorption profile, which suggests that they were not formed in NGC 6908. Finally, the H I profile exhibits details of the interaction, showing three components: one for NGC 6908, another for the excited gas in the NGC 6907 disc and a last one for the gas with higher relative velocities left behind NGC 6908 by dynamical friction, used to estimate the time when the interaction started in (3.4 +/- 0.6) x 10(7) yr ago.
Resumo:
A new inflationary scenario whose exponential potential V (Phi) has a quadratic dependence on the field Phi in addition to the standard linear term is confronted with the five-year observations of the Wilkinson-Microwave Anisotropy Probe and the Sloan Digital Sky Survey data. The number of e-folds (N), the ratio of tensor-to-scalar perturbations (r), the spectral scalar index of the primordial power spectrum (n(s)) and its running (dn(s)/d ln k) depend on the dimensionless parameter a multiplying the quadratic term in the potential. In the limit a. 0 all the results of the exponential potential are fully recovered. For values of alpha not equal 0, we find that the model predictions are in good agreement with the current observations of the Cosmic Microwave Background (CMB) anisotropies and Large-Scale Structure (LSS) in the Universe. Copyright (C) EPLA, 2008.