987 resultados para silicon oxide


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Co3O4 catalysts were prepared by combustion synthesis using different fuels glycine (G), ODH (O) and urea (U). Morphological changes of the materials were observed by using different fuels. The prepared catalysts were characterized by XRD, XPS, SEM, TEM, BET and DRIFTS analysis. All compounds showed 100% conversion of CO below 175C. The prepared catalysts exhibited very high stability and conversions did not decrease even after 50 h of continuous operation. The oxygen storage capacity (OSC) of materials was measured by H-2-TPR analysis. Co3O4-O is having high OSC among the synthesized catalysts. The activation energies of these catalysts were found to be in the range of 42.3-64.8 kJ mol(-1). With DRIFTS analysis, the surface carbonates, superoxide anions, adsorbed CO, O-2 species on the catalyst surface were found and this information was used to develop a detailed reaction pathway. A kinetic model was developed with the help of proposed mechanism and used to fit the data. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the non-enzymatic electronic detection of glucose using field effect transistor (FET) devices made of aminophenylboronic acid (APBA) functionalized reduced graphene oxide (RGO). Detection of glucose molecules was carried out over a wide dynamic range of concentration varying from 100 pM to 100 mM with a detection limit of similar to 2 nM using both covalently and non-covalently functionalized APBA-RGO complex. The normalized change in electrical conductance data shows that the FET devices made of non-covalently functionalized APBA-RGO complex (nc-APBA-RGO) exhibited a linear response to glucose aqueous solution of concentrations varying from 1 nM to 10 mM and showed 4 times enhanced sensitivity over the devices made of covalently functionalized APBA-RGO complex (c-APBA-RGO). Specificity of APBA-RGO complex to glucose is confirmed from the observation of negligible change in electrical conductance after exposure to 0.1 mM of lactose and other interfering factors. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyaniline and graphene oxide composite on activated carbon cum reduced graphene oxide-supported supercapacitor electrodes are fabricated and electrochemically characterized in a three-electrode cell assembly. Attractive supercapacitor performance, namely high-power capability and cycling stability for graphene oxide/polyaniline composite, is observed owing to the layered and porous-polymeric-structured electrodes. Based on the materials characterization data in a three-electrode cell assembly, 1 V supercapacitor devices are developed and performance tested. A comparative study has also been conducted for polyaniline and graphene oxide/polyaniline composite-based 1 V supercapacitors for comprehending the synergic effect of graphene oxide and polyaniline. Graphene oxide/polyaniline composite-based capacitor that exhibits about 100 F g(-1) specific capacitance with faradaic efficiency in excess of 90% has its energy and power density values of 14 Wh kg(-1) and 72 kW kg(-1), respectively. Cycle-life data for over 1000 cycles reflect 10% capacitance degradation for graphene oxide/polyaniline composite supercapacitor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copper oxide (CuO) is one of the most important transition metal oxides due to its unique properties. It is used in various technological applications such as high critical temperature, superconductors, gas sensors, in photoconductive applications and so on. Recently, it has been used as an antimicrobial agent against various pathogenic bacteria. In the present investigation, we studied the structural and antidermatophytic properties of CuO nanoparticles (NPs) synthesized by a precipitation technique. Copper sulfate was used as a precursor and sodium hydroxide as a reducing agent. Scanning electron microscopy (SEM) showed flower-shaped CuO NPs and X-ray diffraction (XRD) pattern showed the crystalline nature of CuO NPs. These NPs were evaluated against two prevalent species of dermatophytes, i.e. Trichophyton rubrum and T. mentagrophytes by using the broth microdilution technique. Further, the NPs activity was also compared with synthetic sertaconazole. Although better antidermatophytic activity was exhibited with sertaconazole as compared to NPs, being synthetic, sertaconazole may not be preferred, as it shows different adverse effects. Trichophyton mentagrophytes is more susceptible to NPs than T. rubrum. A phylogenetic approach was applied for predicting differences in susceptibility of pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tin oxide (SnO2) nanowires are synthesized by Au catalyzed chemical vapor deposition of Sn and C mixture at 900 degrees C by employing a continuous flow of Ar: O-2 (10:1) for an hour. X-ray diffraction and Raman spectroscopy studies indicate that the as-grown SnO2 nanowires are crystalline in nature with tetragonal rutile phase. Electron microscopy studies reveal towards high aspect ratio of nanowires. The field emission studies show that SnO2 nanowires grown on Si substrate exhibit low turn-on field of 1.75 V/mu m (at 0.1 mu A/cm(2)) and long-term emission stability over a period of more than 50 h with a current density of 4 mu A/cm(2) at a constant electric field of 2.25 V/mu m. Hardly any considerable degradation in the emission current is noticed even after 50 h which may be attributed to the high crystallinity of SnO2 nanowires. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We re-assess experimental soft X-ray absorption spectra of the oxygen K-shell which we recorded operando from iron oxide during photoelectrochemical water splitting in KOH electrolyte. In particular, we refer to recently reported transitional electron hole states which originate within the charge carrier depletion layer of the iron oxide and on the iron oxide surface. For the latter we find that an intermediate oxy-peroxo species is formed on the iron oxide with increasing bias potential, which disappears upon further polarization of the electrode, concomitantly with the evolution and disappearance of the aforementioned surface state. The oxygen spectra contain also the spectroscopic signatures of the electrolyte water, the position of which changes with increasing bias potential towards lower X-ray energies, revealing the breaking and formation of hydrogen bonds in the water during the experiment. Combined with potential dependent impedance spectroscopy data we are able to sketch the molecular structure of chemical intermediates and their charge carrier dynamics. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report stable ultrathin Au nanowires supported on reduced graphene oxide with outstanding electrocatalytic activity for borohydride oxidation. Electrochemical impedance spectroscopy measurements showed abnormal inductive behavior, indicative of surface reactivation. DFT calculations indicate that the origin of the high activity stems from the position of the Au d-band center.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new electrochemical sensing device was constructed for determination of pesticides. In this report, acetylcholinesterase was bioconjugated onto hybrid nanocomposite, i.e. iron oxide nanoparticles and poly(indole-5-carboxylic acid) (Fe(3)O(4)NPs/Pin5COOH) was deposited electrochemically on glassy carbon electrode. Fe(3)O(4)NPs was showed as an amplified sensing interface at lower voltage which makes the sensor more sensitive and specific. The enzyme inhibition by pesticides was detected within concentrations ranges between 0.1-60 and 1.5-70 nM for malathion and chlorpyrifos, respectively, under optimal experimental conditions (sodium phosphate buffer, pH 7.0 and 25 degrees C). Biosensor determined the pesticides level in water samples (spiked) with satisfactory accuracy (96%-100%). Sensor showed good storage stability and retained 50% of its initial activity within 70 days at 4 degrees C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a simple and highly sensitive methodology for the room temperature NO2 gas sensing using reduced graphene oxide (RGO) coated clad etched fiber Bragg grating (eFBG). A significant shift (>10 pm) is observed in the reflected Bragg wavelength (lambda(B)) upon exposing RGO coated on the surface of eFBG to the NO2 gas molecules of concentration 0.5 ppm. The shift in Bragg wavelength is due to the change in the refractive index of RGO by charge transfer from the adsorbing NO2 molecules. The range of NO2 concentration is tested from 0.5 ppm to 3 ppm and the estimated time taken for 50% increase in Delta lambda(B) ranges from 20 min (for 0.5 ppm) to 6 min (for 3 ppm). (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An amine functionalized polyaniline (AMPANI) derivative has been grafted onto exfoliated graphite oxide (EGO). The synthesis involved the in-situ chemical oxidative polymerization of functionalized aniline monomer in the presence of EGO with diaminobenzene acting as a bridging ligand to yield EGAMPANI. The synthesized compound was characterized by FT-IR and FT-Raman spectroscopy as well as thermogravimetric and X-ray diffraction analysis. The EGAMPANI was then used to modify a carbon paste electrode (CPE), which was applied for multi-elemental sensing of Pb2+, Cd2+ and Hg2+ ions using differential pulse anodic stripping voltammetty. The limits of detection achieved using the EGAMPANI modified CPE were 22 x 10(-6) M for Hg2+ ion, 1.2 x 10(-6) M for Cd2+ ion and 9.8 x 10(-7) M for Pb2+ ion. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure of yttrium-doped Silicon Carbide Nanotubes has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom is bonded strongly on the surface of the nanotube with a binding energy of 2.37 eV and prefers to stay on the hollow site at a distance of around 2.25 angstrom from the tube. The semi-conducting nanotube with chirality (4, 4) becomes half mettalic with a magnetic moment of 1.0 mu(B) due to influence of Y atom on the surface. There is strong hybridization between d orbital of Y with p orbital of Si and C causing a charge transfer from d orbital of the Y atom to the tube. The Fermi level is shifted towards higher energy with finite Density of States for only upspin channel making the system half metallic and magnetic which may have application in spintronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-k TiO2 thin film on p-type silicon substrate was fabricated by a combined sol-gel and spin coating method. Thus deposited titania film had anatase phase with a small grain size of 16 nm and surface roughness of congruent to 0.6 nm. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), oxide trapped charge (Q(ot)), calculated from the high frequency (1 MHz) C-V curve were 0.47 nF, 0.16 nF, -0.91 V, 4.7x10(-12) C, respectively. As compared to the previous reports, a high dielectric constant of 94 at 1 MHz frequency was observed in the devices investigated here and an equivalent oxide thickness (EOT) was 4.1 nm. Dispersion in accumulation capacitance shows a linear relationship with AC frequencies. Leakage current density was found in acceptable limits (2.1e-5 A/cm(2) for -1 V and 5.7e-7 A/cm(2) for +1 V) for CMOS applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-k TiO2 thin film on p-type silicon substrate was fabricated by a combined sol-gel and spin coating method. Thus deposited titania film had anatase phase with a small grain size of 16 nm and surface roughness of congruent to 0.6 nm. The oxide capacitance (C-ox), flat band capacitance (C-FB), flat band voltage (V-FB), oxide trapped charge (Q(ot)), calculated from the high frequency (1 MHz) C-V curve were 0.47 nF, 0.16 nF, -0.91 V, 4.7x10(-12) C, respectively. As compared to the previous reports, a high dielectric constant of 94 at 1 MHz frequency was observed in the devices investigated here and an equivalent oxide thickness (EOT) was 4.1 nm. Dispersion in accumulation capacitance shows a linear relationship with AC frequencies. Leakage current density was found in acceptable limits (2.1e-5 A/cm(2) for -1 V and 5.7e-7 A/cm(2) for +1 V) for CMOS applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several reports illustrate the wide range applicability of graphene oxide (GO) in water remediation. However, a few layers of graphene oxide tend to aggregate under saline conditions thereby reducing its activity. The effects of aggregation can be minimized by having a random arrangement of GO layers in a three dimensional architecture. The current study emphasizes the potential benefits of highly porous, ultralight graphene oxide foams in environmental applications. These foams were prepared by a facile and cost effective lyophilization technique. The 3D architecture allowed the direct use of these foams in the removal of aqueous pollutants without any pretreatment such as ultrasonication. Due to its macroporous nature, the foams exhibited excellent adsorption abilities towards carcinogenic dyes such as rhodamine B (RB), malachite green (MG) and acriflavine (AF) with respective sorption capacities of 446, 321 and 228 mg g(-1) of foam. These foams were also further investigated for antibacterial activities against E. coli bacteria in aqueous and nutrient growth media. The random arrangement of GO layers in the porous foam architecture allowed it to exhibit excellent antibacterial activity even under physiological conditions by following the classical wrapping-perturbation mechanism. These results demonstrate the vast scope of GO foam in water remediation for both dye removal and antibacterial activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gadolinium oxide, cerium oxide, and 10 mol% gadolinia doped ceria ceramic powders have been synthesized using combustion technique. Though the cubic gadolinia phase is stable at room temperature, single phase monoclinic gadolinia was obtained as a result of combustion synthesis using fuel lean and stoichiometric precursor compositions. This powder was subjected to calcination treatment and ceria doping to study the stability of phases and the rate of phase transformation from monoclinic to cubic gadolinia. It was found that monoclinic gadolinia transforms to cubic gadolinia upon calcination at temperatures less than 1200 degrees C. It was also found that rate of phase transformation is more for powder produced using fuel lean compositions; and the rate is enhanced upon ceria doping. (C) 2015 Elsevier Ltd. All rights reserved.