929 resultados para serine proteinase inhibitor
Resumo:
Mannan-binding lectin (MBL) and MBL-associated serine protease-2 (MASP-2) are two key components of the lectin-pathway of complement-activation. Information on the potential role of lectin-pathway components in carcinogenesis versus immune surveillance of cancer is scarce. This study aimed to determine if serum concentrations of MBL and MASP-2 differ between children with cancer and healthy age-matched controls.
Resumo:
This study aimed to measure serum concentrations of five lectin-pathway components, mannan-binding lectin (MBL), M-ficolin, L-ficolin, H-ficolin, and MBL-associated serine protease-2 (MASP-2), in healthy neonates and children, to determine if they change with age and to compare them with serum concentrations in healthy adults. Concentrations were measured in 141 preterm and 30 term neonates, in 120 children including infants and adolescents, and in 350 adults (97 for L-ficolin) by inhouse time-resolved immunofluorometric assays or commercially available enzyme-linked immunosorbent assays. The adjacent categories method applying Wilcoxon-Mann-Whitney tests was used to determine age categories where concentrations differed significantly. Displaying serum concentration vs. age, an inverted-U shape (higher concentrations in children than in neonates and adults) was found for MBL and the ficolins, and an S-shape for MASP-2. Serum concentrations of all five lectin-pathway components were significantly lower in preterm neonates <32-wk gestational age compared to older neonates, infants, and children. Only M-ficolin in children >1 yr and H-ficolin in term neonates and in children were found to be comparable with adult values. MBL, M-, L-, and H-ficolin, and MASP-2 serum concentrations show important changes with age. The respective normal ranges for adults should not be used in the pediatric population. The age-specific pediatric ranges established here may be used instead.
Resumo:
Non-nephrotoxic immunosuppressive strategies that allow reduction of calcineurin-inhibitor exposure without compromising safety or efficacy remain a goal in kidney transplantation. Immunosuppression based on the mammalian-target-of-rapamycin inhibitor everolimus was assessed as a strategy for elimination of calcineurin-inhibitor exposure and optimisation of renal-graft function while maintaining efficacy.
Resumo:
In periodontitis, an effective host-response is primarily related to neutrophils loaded with serine proteases, including elastase (NE) and protease 3 (PR3), the extracellular activity of which is tightly controlled by endogenous inhibitors. In vitro these inhibitors are degraded by gingipains, cysteine proteases produced by Porphyromonas gingivalis. The purpose of this study was to determine the level of selected protease inhibitors in gingival crevicular fluid (GCF) in relation to periodontal infection. The GCF collected from 31 subjects (nine healthy controls, seven with gingivitis, five with aggressive periodontitis and 10 with chronic periodontitis) was analyzed for the levels of elafin and secretory leukocyte protease inhibitor (SLPI), two main tissue-derived inhibitors of neutrophil serine proteases. In parallel, activity of NE, PR3 and arginine-specific gingipains (Rgps) in GCF was measured. Finally loads of P. gingivalis, Aggregatibacter actinomycetemcomitans, Tannerella forsythia and Treponema denticola were determined. The highest values of elafin were found in aggressive periodontitis and the lowest in controls. The quantity of elafin correlated positively with the load of P. gingivalis, Ta. forsythia and Tr. denticola, as well as with Rgps activity. In addition, NE activity was positively associated with the counts of those bacterial species, but not with the amount of elafin. In contrast, the highest concentrations of SLPI were found in periodontally healthy subjects whereas amounts of this inhibitor were significantly decreased in patients infected with P. gingivalis. Periodontopathogenic bacteria stimulate the release of NE and PR3, which activities escape the control through degradation of locally produced inhibitors (SLPI and elafin) by host-derived and bacteria-derived proteases.
Resumo:
Considerable efforts have been directed toward the identification of small-ruminant prion diseases, i.e., classical and atypical scrapie as well as bovine spongiform encephalopathy (BSE). Here we report the in-depth molecular analysis of the proteinase K-resistant prion protein core fragment (PrP(res)) in a highly scrapie-affected goat flock in Greece. The PrP(res) profile by Western immunoblotting in most animals was that of classical scrapie in sheep. However, in a series of clinically healthy goats we identified a unique C- and N-terminally truncated PrP(res) fragment, which is akin but not identical to that observed for atypical scrapie. These findings reveal novel aspects of the nature and diversity of the molecular PrP(res) phenotypes in goats and suggest that these animals display a previously unrecognized prion protein disorder.
Resumo:
Primary fibroblast cultures of canine cranial (CCL) and caudal (CaCL) cruciate ligaments were stimulated with different apoptosis inducers with or without preincubation of the pancaspase inhibitor zVAD.fmk. In contrast to CaCL fibroblasts, fibroblasts from CCL were significantly more susceptible to apoptosis inducers of the intrinsic pathway like doxorubicin, cisplatin and nitric oxide (NO)-donors and to Fas ligand (FasL), an apoptosis inducer of the death receptor pathway. Apoptotic response to staurosporine and the peroxynitrite donor GEA was similar in both ligament fibroblasts. Stimulation with dexamethasone or TNFalpha could not induce apoptosis in CCL and CaCL fibroblasts, in spite of present TNFR1 and TNFR2 receptors. zVAD.fmk was able to prevent apoptosis in up to 66% of CCL cells when treated with FasL, cisplatin or doxorubicin but it had no effect on NO or peroxynitrite induced apoptosis. In conclusion, differential susceptibility to apoptotic triggers like FasL or NO between cranial and caudal cruciate ligament fibroblasts in vitro may be a reflection of the different susceptibilities to degenerative rupture of the ligament. These findings indicate that a general caspase inhibition does not completely protect canine CCL cells from apoptosis.
Resumo:
In most mammals, prolactin (PRL) is essential for maintaining lactation, and yet the short-term suppression of PRL during established lactation by bromocriptine has produced inconsistent effects on milk yield in cows and goats. To assess the effect of the long-term inhibition of PRL release in lactating dairy cows, 5 Holstein cows in early lactation received daily intramuscular injections of 1mg of the PRL-release inhibitor quinagolide for 9 wk. Four control cows received the vehicle (water) only. During the last week of the treatments, one udder half was milked once a day (1x) and the other twice a day (2x). Blood samples were harvested at milking in wk -1, 1, 4, and 8. The daily injections of quinagolide reduced milking-induced PRL release but not the basal PRL concentration. Quinagolide induced a faster decline in milk production, which was about 5.3 kg/d lower in the quinagolide-treated cows during the last 4 wk of treatment. During wk 9, the inhibition of milk production by quinagolide was maintained in the udder half that was milked 2x but not in the half milked 1x. Milk production was significantly correlated with the quantity of PRL released at milking. Quinagolide did not affect the release of oxytocin at milking. Serum concentration of insulin-like growth factor-1 was not affected by treatment or correlated with milk production. Serum concentrations of leptin and the calciotropic hormone stanniocalcin were not affected by the treatment. In conclusion, the chronic administration of the PRL-release inhibitor quinagolide decreases milk production in dairy cows. The effect is likely the result of the reduced release of milking-induced PRL and is modulated at the level of the gland by milking frequency.
Resumo:
Based on the structural similarity of viral fusion proteins within the family Paramyxoviridae, we tested recently described and newly synthesized acetanilide derivatives for their capacity to inhibit measles virus (MV)-, canine distemper virus (CDV)- and Nipah virus (NiV)-induced membrane fusion. We found that N-(3-cyanophenyl)-2-phenylacetamide (compound 1) has a high capacity to inhibit MV- and CDV-induced (IC(50) muM), but not NiV-induced, membrane fusion. This compound is of outstanding interest because it can be easily synthesized and its cytotoxicity is low [50 % cytotoxic concentration (CC(50)) >/= 300 muM], leading to a CC(50)/IC(50) ratio of approximately 100. In addition, primary human peripheral blood lymphocytes and primary dog brain cell cultures (DBC) also tolerate high concentrations of compound 1. Infection of human PBMC with recombinant wild-type MV is inhibited by an IC(50) of approximately 20 muM. The cell-to-cell spread of recombinant wild-type CDV in persistently infected DBC can be nearly completely inhibited by compound 1 at 50 muM, indicating that the virus spread between brain cells is dependent on the activity of the viral fusion protein. Our findings demonstrate that this compound is a most applicable inhibitor of morbillivirus-induced membrane fusion in tissue culture experiments including highly sensitive primary cells.
Resumo:
The calcium-binding protein calreticulin (CRT) regulates protein folding in the endoplasmic reticulum (ER) and is induced in acute myeloid leukemia (AML) cells with activation of the unfolded protein response. Intracellular CRT translocation to the cell surface induces immunogenic cell death, suggesting a role in tumor suppression. In this study, we investigated CRT regulation in the serum of patients with AML. We found that CRT is not only exposed by exocytosis on the outer cell membrane after treatment with anthracyclin but also ultimately released to the serum in vitro and in AML patients during induction therapy. Leukemic cells of 113 AML patients showed increased levels of cell-surface CRT (P < .0001) and N-terminus serum CRT (P < .0001) compared with normal myeloid cells. Neutrophil elastase was identified to cleave an N-terminus CRT peptide, which was characterized as vasostatin and blocked ATRA-triggered differentiation. Levels of serum vasostatin in patients with AML inversely correlated with bone marrow vascularization, suggesting a role in antiangiogenesis. Finally, patients with increased vasostatin levels had longer relapse-free survival (P = .04) and specifically benefited from autologous transplantation (P = .006). Our data indicate that vasostatin is released from cell-surface CRT and impairs differentiation of myeloid cells and vascularization of the bone marrow microenvironment.
Resumo:
Chemotherapy modestly prolongs survival of patients with advanced gastric cancer, but strategies are needed to increase its efficacy. Histone deacetylase (HDAC) inhibitors modify chromatin and can block cancer cell proliferation and promote apoptosis.
Resumo:
Background Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis. Methodology/Principal Findings We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis. Conclusions/Significance We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation.
Resumo:
Background Minor protease inhibitor (PI) mutations often exist as polymorphisms in HIV-1 sequences from treatment-naïve patients. Previous studies showed that their presence impairs the antiretroviral treatment (ART) response. Evaluating these findings in a larger cohort is essential. Methods To study the impact of minor PI mutations on time to viral suppression and time to virological failure, we included patients from the Swiss HIV Cohort Study infected with HIV-1 subtype B who started first-line ART with a PI and two nucleoside reverse transcriptase inhibitors. Cox regression models were performed to compare the outcomes among patients with 0 and ≥1 minor PI mutation. Models were adjusted for baseline HIV-1 RNA, CD4 cell count, sex, transmission category, age, ethnicity, year of ART start, the presence of nucleoside reverse transcriptase inhibitor mutations, and stratified for the administered PIs. Results We included 1199 patients of whom 944 (78.7%) received a boosted PI. Minor PI mutations associated with the administered PI were common: 41.7%, 16.1%, 4.7% and 1.9% had 1, 2, 3 or ≥4 mutations, respectively. The time to viral suppression was similar between patients with 0 (reference) and ≥1 minor PI mutation (multivariable hazard ratio (HR): 1.1 [95% confidence interval (CI): 1.0–1.3], P = .196). The time to virological failure was also similar (multivariable HR:.9 [95% CI:.5–1.6], P = .765). In addition, the impact of each single minor PI mutation was analyzed separately: none was significantly associated with the treatment outcome. Conclusions The presence of minor PI mutations at baseline has no effect on the therapy outcome in HIV infected individuals.
Resumo:
IgE antibodies bind the high-affinity IgE Fc receptor (FcεRI), found primarily on mast cells and basophils, and trigger inflammatory cascades of the allergic response. Inhibitors of IgE-FcεRI binding have been identified and an anti-IgE therapeutic antibody (omalizumab) is used to treat severe allergic asthma. However, preformed IgE-FcεRI complexes that prime cells before allergen exposure dissociate extremely slowly and cannot be disrupted by strictly competitive inhibitors. IgE-Fc conformational flexibility indicated that inhibition could be mediated by allosteric or other non-classical mechanisms. Here we demonstrate that an engineered protein inhibitor, DARPin E2_79 (refs 9, 10, 11), acts through a non-classical inhibition mechanism, not only blocking IgE-FcεRI interactions, but actively stimulating the dissociation of preformed ligand-receptor complexes. The structure of the E2_79-IgE-Fc(3-4) complex predicts the presence of two non-equivalent E2_79 sites in the asymmetric IgE-FcεRI complex, with site 1 distant from the receptor and site 2 exhibiting partial steric overlap. Although the structure is indicative of an allosteric inhibition mechanism, mutational studies and quantitative kinetic modelling indicate that E2_79 acts through a facilitated dissociation mechanism at site 2 alone. These results demonstrate that high-affinity IgE-FcεRI complexes can be actively dissociated to block the allergic response and suggest that protein-protein complexes may be more generally amenable to active disruption by macromolecular inhibitors.