988 resultados para sensor integration
Resumo:
Harmful algal blooms (HABs) are a significant and potentially expanding problem around the world. Resource management and public health protection require sufficient information to reduce the impacts of HABs by response strategies and through warnings and advisories. To be effective, these programs can best be served by an integration of improved detection methods with both evolving monitoring systems and new communications capabilities. Data sets are typically collected from a variety of sources, these can be considered as several types: point data, such as water samples; transects, such as from shipboard continuous sampling; and synoptic, such as from satellite imagery. Generation of a field of the HAB distribution requires all of these sampling approaches. This means that the data sets need to be interpreted and analyzed with each other to create the field or distribution of the HAB. The HAB field is also a necessary input into models that forecast blooms. Several systems have developed strategies that demonstrate these approaches. These range from data sets collected at key sites, such as swimming beaches, to automated collection systems, to integration of interpreted satellite data. Improved data collection, particularly in speed and cost, will be one of the advances of the next few years. Methods to improve creation of the HAB field from the variety of data types will be necessary for routine nowcasting and forecasting of HABs.
Resumo:
The band-by-band vicarious calibration of on-orbit satellite ocean color instruments, such as SeaWiFS and MODIS, using ground-based measurements has significant residual uncertainties. This paper applies spectral shape and population statistics to tune the calibration of the blue bands against each other to allow examination of the interband calibration and potentially provide an analysis of calibration trends. This adjustment does not require simultaneous matches of ground and satellite observations. The method demonstrates the spectral stability of the SeaWiFS calibration and identifies a drift in the MODIS instrument onboard Aqua that falls within its current calibration uncertainties.
Resumo:
In the face of dramatic declines in groundfish populations and a lack of sufficient stock assessment information, a need has arisen for new methods of assessing groundfish populations. We describe the integration of seafloor transect data gathered by a manned submersible with high-resolution sonar imagery to produce a habitat-based stock assessment system for groundfish. The data sets used in this study were collected from Heceta Bank, Oregon, and were derived from 42 submersible dives (1988–90) and a multibeam sonar survey (1998). The submersible habitat survey investigated seafloor topography and groundfish abundance along 30-minute transects over six predetermined stations and found a statistical relationship between habitat variability and groundfish distribution and abundance. These transects were analyzed in a geographic information system (GIS) by using dynamic segmentation to display changes in habitat along the transects. We used the submersible data to extrapolate fish abundance within uniform habitat patches over broad areas of the bank by means of a habitat classification based on the sonar imagery. After applying a navigation correction to the submersible-based habitat segments, a good correlation with major boundaries on the backscatter and topographic boundaries on the imagery were apparent. Extrapolation of the extent of uniform habitats was made in the vicinity of the dive stations and a preliminary stock assessment of several species of demersal fish was calculated. Such a habitat-based approach will allow researchers to characterize marine communities over large areas of the seafloor.