995 resultados para semiconductor strain gage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electrical and structural characteristics of tantalum-titanium bilayers on silicon reacted by electron beam heating have been investigated over a wide range of temperature and time conditions. The reacted layers exhibit low sheet resistance and stable electrical characteristics up to at least 1100℃. Titanium starts reacting from 750℃ onwards for 100 milliseconds reaction times whereas tantalum starts reacting only above 900℃ for such short reaction times. RBS results confirm that silicon is the major diffusing species and there is no evidence for the formation of ternary silicides. Reactions have also been explored on millisecond time scales by non-isothermal heating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The chapter reviews properties and applications of linear semiconductor optical amplifiers (SOA). Section 12.1 covers SOA basics, including working principles, material systems, structures and their growth. Booster or inline amplifiers as well as low-noise preamplifiers are classified. Section 12.2 discusses the influence of parameters like gain, noise figure, gain saturation, gain and phase dynamics, and alpha-factor. In Sect. 12.3, the application of a linear SOA as a reach extender in future access networks is addressed. The input power dynamic range is introduced, and measurements for on-off keying and phase shift keying signals are shown. Section 12.4 presents the state of the art for commercially available SOA and includes a treatment of reflective SOAs (RSOA) as well. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the first monolithically integrated semiconductor pulse source consisting of a mode-locked laser diode, Mach-Zehnder pulse picker, and semiconductor optical amplifier. Pairs of 5.6 ps pulses are generated at a 250 MHz repetition rate. © 2012 OSA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coherence properties of a transient electron-hole state developing during superradiance emission in semiconductor laser structures have been studied experimentally using a Michelson interferometer and Young's classic double-slit configuration. The results demonstrate that, in the lasers studied, the first-order correlation function, which quantifies spatial coherence, approaches unity for superradiant emission and is 0.2-0.5 for laser emission. The supercoherence is due to long-range ordering upon the superradiant phase transition. © 2012 Kvantovaya Elektronika and Turpion Ltd.